Advertisement

Metabolomics

, Volume 9, Issue 6, pp 1286–1300 | Cite as

How metabolomics can contribute to bio-processes: a proof of concept study for biomarkers discovery in the context of nitrogen-starved microalgae grown in photobioreactors

  • Frédérique Courant
  • Arnaud Martzolff
  • Graziella Rabin
  • Jean-Philippe Antignac
  • Bruno Le Bizec
  • Patrick Giraudeau
  • Illa Tea
  • Serge Akoka
  • Aurélie Couzinet
  • Guillaume Cogne
  • Dominique Grizeau
  • Olivier GonçalvesEmail author
Original Article

Abstract

Microalgae appear to be one of the most promising sustainable resources as alternative crops for the production of renewable transport fuel. The exploitation of this bioresource requires, however, a fine monitoring of the culture conditions, for example by using more relevant control variables than usual macroscopic indicators (biomass or pigment estimation). In this proof of concept study, we propose to search potential biomarkers of progressive nitrogen regime culture conditions using an untargeted metabolomic approach based on LC-HRMS combined to a non-invasive analysis based on FTIR spectroscopy. One microalgae model was investigated i.e. Chlamydomonas reinhardtii to characterize the effect of progressive nitrogen regime in batch culture conditions on its metabolome. FTIR allowed assessing the intracellular macrometabolic perturbations, highlighting the over-accumulation of carbohydrates. LC-HRMS complemented the macromolecular information by revealing the dependence of microalgae metabotypes on nitrogen regime conditions tested for cells culture. Patterns of significantly modulated metabolites were also detected during those slight contrasted nitrogen regimes and interesting features were structurally elucidated. This included metabolites belonging to the pantothenate, branched chain and aromatic amino acids pathways. In the last step of this proof of concept study, amino acid targets proposed by metabolomic investigations were assessed on nitrogen-limited continuous culture on photobioreactors. This was performed to test the validity of proposed targets in real small-scale industrial production conditions. Results were very encouraging and suggested the possibility of using potentially relevant metabolites as intracellular biomarkers only (tryptophan) or as both intra and extracellular biomarkers (e.g. 2-methylbutyric acid and ketoleucine).

Keywords

LC-HRMS FTIR spectroscopy Nitrogen progressive regime Chlamydomonas reinhardtii Biofuel Photobioreactors 

Abbreviations

ATR

Attenuated total reflectance

BCAAs

Branched-chain amino acids

CE

Capillary electrophoresis

FTIR

Fourier transform infrared spectroscopy

GC

Gas chromatography

HC

Hierarchical clustering

HPLC

High performance liquid chromatography

HTS-XT

High throughput screening eXTension

LC-HRMS

Liquid chromatography—high resolution mass spectrometry

MS

Mass spectrometry

NMR

Nuclear magnetic resonance

PLS-DA

Partial least square-discriminant analysis

RSD

Relative standard deviation

TAP

Tris acetate phosphate

TIC

Total ionic current

Notes

Acknowledgments

The authors wish to acknowledge CORSAIRE metabolomics analytical facilities from BIOGENOUEST network (http://www.biogenouest.org/). Part of this work has been funded by the French National Research Agency project ALGOMICS (ANR-08-BIOE-002).

Supplementary material

11306_2013_532_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1776 kb)

References

  1. Alvarez-Ordonez, A., Mouwen, D. J., Lopez, M., & Prieto, M. (2011). Fourier transform infrared spectroscopy as a tool to characterize molecular composition and stress response in foodborne pathogenic bacteria. [Research Support, Non-U.S. Gov’t Review]. Journal of Microbiol Methods, 84(3), 369–378.CrossRefGoogle Scholar
  2. Antignac, J. P., Courant, F., Pinel, G., Monteau, F., & Le Bizec, B. (2011). Mass spectrometric based metabolomic in the field of chemical risk: State of the art, pitfalls, and future trends. Trends in Analytical Chemistry, 30, 292–301.CrossRefGoogle Scholar
  3. Awasthi, M., Batra, J., & Kateriya, S. (2012). Disulphide bridges of phospholipase C of Chlamydomonas reinhardtii modulates lipid interaction and dimer stability. PLoS One, 7(6), e39258. doi: 10.1371/journal.pone.0039258.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baba, M., Suzuki, I., & Shiraiwa, Y. (2011). Proteomic analysis of high-CO(2)-inducible extracellular proteins in the unicellular green alga Chlamydomonas reinhardtii. Plant and Cell Physiology, 52(8), 1302–1314. doi: 10.1093/pcp/pcr078.CrossRefPubMedGoogle Scholar
  5. Ball, S. G., Dirick, L., Decq, A., Martiat, J. C., & Matagne, R. F. (1990). Physiology of starch storage in the monocellular alga Chlamydomonas reinhardtii. Plant Science, 66(1), 1–9. doi: 10.1016/0168-9452(90)90162-h.CrossRefGoogle Scholar
  6. Bolling, C., & Fiehn, O. (2005). Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation. Plant Physiology, 139(4), 1995–2005.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bolten, C. J., Kiefer, P., Letisse, F., Portais, J. C., & Wittmann, C. (2007). Sampling for metabolome analysis of microorganisms. Analytical Chemistry, 79(10), 3843–3849. doi: 10.1021/ac0623888.CrossRefPubMedGoogle Scholar
  8. Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., & Wijffels, R. H. (2012). The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresource Technology, 124, 217–226. doi: 10.1016/j.biortech.2012.08.003.CrossRefPubMedGoogle Scholar
  9. Carfagna, S., Salbitani, G., Vona, V., & Esposito, S. (2011). Changes in cysteine and O-acetyl-l-serine levels in the microalga Chlorella sorokiniana in response to the S-nutritional status. Journal of Plant Physiology, 168(18), 2188–2195. doi: 10.1016/j.jplph.2011.07.012.CrossRefPubMedGoogle Scholar
  10. Chassagnole, C., Letisse, F., Diano, A., & Lindley, N. D. (2002). Carbon flux analysis in a pantothenate overproducing Corynebacterium glutamicum strain. Molecular Biology Reports, 29(1–2), 129–134.CrossRefPubMedGoogle Scholar
  11. Courant, F., Royer, A. L., Chereau, S., Morvan, M. L., Monteau, F., Antignac, J. P., et al. (2012). Implementation of a semi-automated strategy for the annotation of metabolomic fingerprints generated by liquid chromatography-high resolution mass spectrometry from biological samples. Analyst, 137(21), 4958–4967. doi: 10.1039/c2an35865d.CrossRefPubMedGoogle Scholar
  12. De Smet, I., Voss, U., Lau, S., Wilson, M., Shao, N., Timme, R. E., et al. (2011). Unraveling the evolution of auxin signaling. Plant Physiology, 155(1), 209–221.CrossRefPubMedGoogle Scholar
  13. Dean, A. P., Sigee, D. C., Estrada, B., & Pittman, J. K. (2010). Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. [Research Support, Non-U.S. Gov’t]. Bioresource Technology, 101(12), 4499–4507. doi: 10.1016/j.biortech.2010.01.065.CrossRefPubMedGoogle Scholar
  14. DuBois, G. K., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350–356.CrossRefGoogle Scholar
  15. El Rammouz, R., Letisse, F., Durand, S., Portais, J. C., Moussa, Z. W., & Fernandez, X. (2010). Analysis of skeletal muscle metabolome: Evaluation of extraction methods for targeted metabolite quantification using liquid chromatography tandem mass spectrometry. Analytical Biochemistry, 398(2), 169–177.CrossRefPubMedGoogle Scholar
  16. Ganesan, B., Dobrowolski, P., & Weimer, B. C. (2006). Identification of the leucine-to-2-methylbutyric acid catabolic pathway of Lactococcus lactis. Applied and Environment Microbiology, 72(6), 4264–4273. doi: 10.1128/AEM.00448-06.CrossRefGoogle Scholar
  17. Girault, T., Francois, J., Rogniaux, H., Pascal, S., Delrot, S., Coutos-Thevenot, P., et al. (2008). Exogenous application of a lipid transfer protein-jasmonic acid complex induces protection of grapevine towards infection by Botrytis cinerea. Plant Physiology and Biochemistry, 46(2), 140–149. doi: 10.1016/j.plaphy.2007.10.005.CrossRefPubMedGoogle Scholar
  18. Goff, K. L., Quaroni, L., & Wilson, K. E. (2009). Measurement of metabolite formation in single living cells of Chlamydomonas reinhardtii using synchrotron Fourier-Transform Infrared spectromicroscopy. [Research Support, Non-U.S. Gov’t]. Analyst, 134(11), 2216–2219. doi: 10.1039/b915810c.CrossRefPubMedGoogle Scholar
  19. Gonzalez-Fernandez, C., & Ballesteros, M. (2012). Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnology Advances, 30(6), 1655–1661. doi: 10.1016/j.biotechadv.2012.07.003.CrossRefPubMedGoogle Scholar
  20. Gorman, D. S., & Levine, R. P. (1965). Cytochrome f and plastocyanin: Their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proceedings of the National Academy of Sciences of the United States of America, 54(6), 1665–1669.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hutner, S. H., Provasoli, L., Schatz, A., & Haskins, C. P. (1950). Some Approaches to the Study of the Role of Metals in the Metabolism of Microorganisms. Proceedings of the American Philosophical Society, 94(2), 152–170.Google Scholar
  22. Jamers, A., Blust, R., & De Coen, W. (2009). Omics in algae: Paving the way for a systems biological understanding of algal stress phenomena? Aquatic Toxicology, 92(3), 114–121.CrossRefPubMedGoogle Scholar
  23. James, G. O., Hocart, C. H., Hillier, W., Chen, H., Kordbacheh, F., Price, G. D., et al. (2011). Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. Bioresource Technology, 102(3), 3343–3351.CrossRefPubMedGoogle Scholar
  24. Klein, U., & Betz, A. (1978). Some approaches to the study of the role of metals in the metabolism of microorganisms. Plant Physiology, 61(6), 953–956.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kusano, M., Fukushima, A., Redestig, H., & Saito, K. (2011). Metabolomic approaches toward understanding nitrogen metabolism in plants. Journal of Experimental Botany, 62(4), 1439–1453.CrossRefPubMedGoogle Scholar
  26. Lam, M. K., & Lee, K. T. (2012). Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances, 30(3), 673–690.CrossRefPubMedGoogle Scholar
  27. Larkum, A. W., Ross, I. L., Kruse, O., & Hankamer, B. (2012). Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends in Biotechnology, 30(4), 198–205.CrossRefPubMedGoogle Scholar
  28. Lau, S., De Smet, I., Kolb, M., Meinhardt, H., & Jurgens, G. (2011). Auxin triggers a genetic switch. Nature Cell Biology, 13(5), 611–615.CrossRefPubMedGoogle Scholar
  29. Lau, S., Shao, N., Bock, R., Jurgens, G., & De Smet, I. (2009). Auxin signaling in algal lineages: Fact or myth? Trends in Plant Science, 14(4), 182–188.CrossRefPubMedGoogle Scholar
  30. Lee do, Y., Park, J. J., Barupal, D. K., & Fiehn, O. (2012). System response of metabolic networks in Chlamydomonas reinhardtii to total available ammonium. Molecular and Cellular Proteomics, 11(10), 973–988. doi: 10.1074/mcp.M111.016733.CrossRefPubMedGoogle Scholar
  31. Longworth, J., Noirel, J., Pandhal, J., Wright, P. C., & Vaidyanathan, S. (2012). HILIC- and SCX-based quantitative proteomics of Chlamydomonas reinhardtii during nitrogen starvation induced lipid and carbohydrate accumulation. Journal of Proteome Research,. doi: 10.1021/pr300692t.PubMedGoogle Scholar
  32. Lowry, O., Rosenbrough, N., Farr, A., & Randall, R. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.PubMedGoogle Scholar
  33. Martinez-Gomez, P., Sanchez-Perez, R., & Rubio, M. (2012). Clarifying omics concepts, challenges, and opportunities for Prunus breeding in the postgenomic era. OMICS: A Journal of Integrative Biology, 16(5), 268–283. doi: 10.1089/omi.2011.0133.CrossRefPubMedGoogle Scholar
  34. Martzolff, A., Cahoreau, E., Cogne, G., Peyriga, L., Portais, J. C., Dechandol, E., et al. (2012). Photobioreactor design for isotopic non-stationary (13) C-metabolic flux analysis (INST (13) C-MFA) under photoautotrophic conditions. Biotechnology and Bioengineering, 109(12), 3030–3040. doi: 10.1002/bit.24575.CrossRefPubMedGoogle Scholar
  35. Mecozzi, M., Pietroletti, M., & Tornambe, A. (2011). Molecular and structural characteristics in toxic algae cultures of Ostreopsis ovata and Ostreopsis spp. evidenced by FTIR and FTNIR spectroscopy. [Research Support, Non-U.S. Gov’t]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78(5), 1572–1580. doi: 10.1016/j.saa.2011.02.002.CrossRefGoogle Scholar
  36. Nicholson, J., Connelly, J., Lindon, J., & Holmes, E. (2002). Metabonomics: A platform for studying drug toxicity and gene function. Nature Reviews Drug Discovery, 1(2), 153–161.CrossRefPubMedGoogle Scholar
  37. Nicholson, J., Lindon, J., & Holmes, E. (1999). ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivaraiate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29(11), 1181–1189.CrossRefPubMedGoogle Scholar
  38. Ratha, S. K., & Prasanna, R. (2012). Bioprospecting microalgae as potential sources of “green energy”–challenges and perspectives (review). Prikladnaia Biokhimiia i Mikrobiologiia, 48(2), 133–149.PubMedGoogle Scholar
  39. Sanchez, D. H., Siahpoosh, M. R., Roessner, U., Udvardi, M., & Kopka, J. (2008). Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiologia Plantarum, 132(2), 209–219.PubMedGoogle Scholar
  40. Smith, A. G., Croft, M. T., Moulin, M., & Webb, M. E. (2007). Plants need their vitamins too. Current Opinion in Plant Biology, 10(3), 266–275.CrossRefPubMedGoogle Scholar
  41. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78(3), 779–787. doi: 10.1021/ac051437y.CrossRefPubMedGoogle Scholar
  42. Soeno, K., Goda, H., Ishii, T., Ogura, T., Tachikawa, T., Sasaki, E., et al. (2010). Auxin biosynthesis inhibitors, identified by a genomics-based approach, provide insights into auxin biosynthesis. Plant and Cell Physiology, 51(4), 524–536.CrossRefPubMedGoogle Scholar
  43. Theodoridis, G., Gika, H., & Wilson, I. (2008). LC-MS-based methodology for global metabolite profiling in metabonomics/metabolomics. Trends in Analytical Chemistry, 27, 251–260.CrossRefGoogle Scholar
  44. Van Vooren, G., Le Grand, F., Legrand, J., Cuine, S., Peltier, G., & Pruvost, J. (2012). Investigation of fatty acids accumulation in Nannochloropsis oculata for biodiesel application. Bioresource Technology, 124, 421–432. doi: 10.1016/j.biortech.2012.08.009.CrossRefPubMedGoogle Scholar
  45. Wang, J. H., Byun, J., & Pennathur, S. (2010). Analytical approaches to metabolomics and applications to systems biology. Seminars in Nephrology, 30(5), 500–511.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wang, B., Lan, C. Q., & Horsman, M. (2012). Closed photobioreactors for production of microalgal biomasses. Biotechnology Advances, 30(4), 904–912. doi: 10.1016/j.biotechadv.2012.01.019.CrossRefPubMedGoogle Scholar
  47. Wegener, K. M., Singh, A. K., Jacobs, J. M., Elvitigala, T., Welsh, E. A., Keren, N., et al. (2010). Global proteomics reveal an atypical strategy for carbon/nitrogen assimilation by a cyanobacterium under diverse environmental perturbations. Molecular and Cellular Proteomics, 9(12), 2678–2689.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Winder, C. L., Cornmell, R., Schuler, S., Jarvis, R. M., Stephens, G. M., & Goodacre, R. (2011). Metabolic fingerprinting as a tool to monitor whole-cell biotransformations. Analytical and Bioanalytical Chemistry, 399(1), 387–401. doi: 10.1007/s00216-010-4342-z.CrossRefPubMedGoogle Scholar
  49. Wu, H., Volponi, J. V., Oliver, A. E., Parikh, A. N., Simmons, B. A., & Singh, S. (2011). In vivo lipidomics using single-cell Raman spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 108(9), 3809–3814.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Xia, J., Mandal, R., Sinelnikov, I. V., Broadhurst, D., & Wishart, D. S. (2012). MetaboAnalyst 2.0–a comprehensive server for metabolomic data analysis. Nucleic Acids Research, 40(Web Server issue), W127–W133.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Frédérique Courant
    • 2
  • Arnaud Martzolff
    • 1
  • Graziella Rabin
    • 1
  • Jean-Philippe Antignac
    • 2
  • Bruno Le Bizec
    • 2
  • Patrick Giraudeau
    • 3
  • Illa Tea
    • 3
  • Serge Akoka
    • 3
  • Aurélie Couzinet
    • 4
  • Guillaume Cogne
    • 1
  • Dominique Grizeau
    • 1
  • Olivier Gonçalves
    • 1
    Email author
  1. 1.LUNAM Université, Université de Nantes, CNRS, GEPEASaint-Nazaire CedexFrance
  2. 2.Laboratoire d’Étude des Résidus et Contaminants dans les Aliments LABERCALUNAM Université, OnirisNantesFrance
  3. 3.LUNAM Université, Université de Nantes, CNRS, Chimie et Interdisciplinarité : Synthèse, Analyse, Modélisation CEISAMNantes Cedex 03France
  4. 4.LUNAM Université, Université de Nantes MMSNantes Cedex 03France

Personalised recommendations