Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

An innovative approach to grape metabolomics: stilbene profiling by suspect screening analysis

Abstract

Suspect screening analysis is a targeted metabolomics approach in which identification of compounds relies on specific available information such as their molecular formula and isotopic pattern. This method was applied to the study of grape metabolomics with an UPLC/MS high-resolution Q-TOF mass spectrometer (nominal resolution 40,000) coupled with a Jet Stream ionization source. The present paper describes the detailed qualitative and quantitative study of grape stilbenes, the principal polyphenols associated with the beneficial effects of drinking wine. For identification of compounds, a new database was expressly constructed from the molecular information of potential metabolites of grape and wine from the literature and other electronic databases. Currently, GrapeMetabolomics contains about a thousand putative grape compounds. If untargeted analysis of a sample provides identification of a new compound with a sufficiently confident score, it is added to the database. Thus, by increasing the number of samples studied, GrapeMetabolomics can be expanded. This method is effective for identification of the molecular formulae of several hundred metabolites in two runs (positive and negative ionization) with minimal sample preparation, and can also be used to analyse some single classes of compounds involved in cell and tissue metabolism. With this approach, a total of 18 stilbene derivatives was identified in two grape samples (Raboso Piave and Primitivo) on the basis of accurate mass measurements and isotopic patterns, and identification was confirmed by MS/MS analysis. The approach can also potentially be applied to the metabolomics of other plant varieties.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adrian, M., Jeandet, P., Douillet-Breuil, A. C., Levite, D., Debord, S., & Bessis, R. (2000a). Assay of resveratrol and derivative stilbenes in wines by direct injection high performance liquid chromatography. American Journal of Enology and Viticulture, 51, 37–41.

  2. Adrian, M., Jeandet, P., Douillet-Breuil, A. C., Tesson, L., & Bessis, R. (2000b). Stilbene content of mature Vitis vinifera berries in response to UV-C elicitation. Journal of Agricultural and Food Chemistry, 48, 6103–6105.

  3. Arapitsas, P., Scholz, M., Vrhovsek, U., Di Blasi, S., Biondi Bartolini, A., Masuero, D., et al. (2012). A metabolomic approach to the study of wine micro-oxygenation. PLoS ONE,. doi:10.1371/journal.pone.0037783.

  4. Baderschneider, B., & Winterhalter, P. (2000). Isolation and characterization of novel stilbene derivatives from Riesling wine. Journal of Agricultural and Food Chemistry, 48, 2681–2686.

  5. Bavaresco, L., Cantù, E., Fregoni, M., & Trevisan, M. (1997). Constitutive stilbene contents of grapevine cluster stems as potential source of resveratrol in wine. Vitis, 36, 115–118.

  6. Bavaresco, L., Mattivi, F., De Rosso, M., & Flamini, R. (2012). Effects of elicitors, viticultural factors, and enological practices on resveratrol and stilbenes in grapevine and wine. Mini-Reviews in Medicinal Chemistry, 12, 1366–1381.

  7. Bavaresco, L., Vezzulli, S., Battilani, P., Giorni, P., Pietri, A., & Bertuzzi, T. (2003). Effect of ochratoxin A-producing Aspergilli on stilbenic phytoalexin synthesis in grapes. Journal of Agricultural and Food Chemistry, 51, 6151–6157.

  8. Bertelli, A. A., Giovannini, L., Giannessi, D., Migliori, M., Bernini, W., Fregoni, M., et al. (1995). Antiplatelet activity of synthetic and natural resveratrol in red wine. International Journal of Tissue Reactions, 17, 1–3.

  9. Brown, M., Dunn, W. B., Dobson, P., Patel, Y., Winder, C. L., Francis-McIntyre, S., et al. (2009). Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics. Analyst, 134, 1322–1332.

  10. Buiarelli, F., Coccioli, F., Jasionowska, R., Merolle, M., & Terracciano, A. (2007). Analysis of some stilbenes in Italian wines by liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 21, 2955–2964.

  11. Careri, M., Corradini, C., Elviri, L., Nicoletti, I., & Zagnoni, I. (2004). Liquid chromatography-electrospray tandem mass spectrometry of cis-resveratrol and trans-resveratrol: development, validation, and application of the method to red wine, grape, and winemaking byproducts. Journal of Agricultural and Food Chemistry, 52, 6868–6874.

  12. Choi, C. W., Choi, Y. H., Cha, Mi-R, Yoo, D. S., Kim, Y. S., Yon, G. H., et al. (2010). A New Glycoside of Resveratrol Dimer from Stem Bark of Vitis vinifera. Bulletin of the Korean Chemical Society, 31, 3448–3450.

  13. Cichewicz, R. H., Kouzi, S. A., & Hamann, M. T. (2000). Dimerization of resveratrol by the grapevine pathogen Botrytis cinerea. Journal of Natural Products, 63, 29–33.

  14. Cuadros-Inostroza, A., Giavalisco, P., Hummel, J., Eckardt, A., Willmitzer, L., & Peña-Cortés, H. (2010). Discrimination of wine attributes by metabolome analysis. Analytical Chemistry, 82, 3573–3580.

  15. De Rosso, M., Panighel, A., Carraro, R., Padoan, E., Favaro, A., Dalla Vedova, A., et al. (2010). Chemical characterization and oenological potential of Raboso varieties by study of secondary grape metabolites. Journal of Agricultural and Food Chemistry, 58, 11364–11371.

  16. De Vos, R. C., Moco, S., Lommen, A., Keurentjes, J. J., Bino, R. J., & Hall, R. D. (2007). Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols, 2, 778–791.

  17. Di Stefano, R., & Flamini, R. (2008). Free and glycoside hydroxystilbenes in grape. In R. Flamini (Ed.), Hyphenated techniques in grape & wine chemistry (pp. 70–76). Chichester: Wiley.

  18. Douillet-Breuil, A. C., Jeandet, P., Adrian, M., & Bessis, R. (1999). Changes in the phytoalexin content of various Vitis Spp. in response to ultraviolet C elicitation. Journal of Agricultural and Food Chemistry, 47, 4456–4461.

  19. Flamini, R. (2003). Mass spectrometry in grape and wine chemistry. Part I. Polyphenols. Mass Spectrometry Review, 22, 218–250.

  20. Flamini, R., & Dalla Vedova, A. (2004). Fast determination of the total free resveratrol content in wine by direct-exposure-probe, positive-ion chemical ionization and collision-induced-dissociation mass spectrometry. Rapid Communications in Mass Spectrometry, 18, 1925–1931.

  21. Flamini, R., Dalla Vedova, A., & Calò, A. (2001). Study on the monoterpene contents of 23 accessions of Muscat grape: correlation between aroma profile and variety. Rivista di Viticoltura e di Enologia, 2(3), 35–49.

  22. Frankel, E. N., Waterhouse, A. L., & Kinsella, J. E. (1993). Inhibition of human LDL oxidation by resveratrol. Lancet, 341, 1103–1104.

  23. Frémont, L., Belguendouz, L., & Delpal, S. (1999). Antioxidant activity of resveratrol and alcohol-free wine polyphenols related to LDL oxidation and polyunsaturated fatty acids. Life Sciences, 64, 2511–2521.

  24. Gamoh, K., & Nakashima, K. (1999). Liquid chromatography/mass spectrometric determination of trans-resveratrol in wine using a tandem solid-phase extraction method. Rapid Communications in Mass Spectrometry, 13, 1112–1115.

  25. Gatto, P., Vrhovsek, U., Muth, J., Segala, C., Romualdi, C., Fontana, P., et al. (2008). Ripening and genotype control stilbene accumulation in healthy grapes. Journal of Agricultural and Food Chemistry, 56, 11773–11785.

  26. Geahlen, R. L., & McLaughlin, J. L. (1989). Piceatannol (3,4,3′,5′-tetrahydroxy-trans-stilbene) is a naturally occurring protein-tyrosine kinase inhibitor. Biochemical and Biophysical Research Communications, 165, 241–245.

  27. Guebailia, H. A., Chira, K., Richard, T., Mabrouk, T., Furiga, A., Vitrac, X., et al. (2006). Hopeaphenol: the first resveratrol tetramer in wines from North Africa. Journal of Agricultural and Food Chemistry, 54, 9559–9564.

  28. Han, X., Shen, T., & Lou, H. (2007). Dietary polyphenols and their biological significance. International Journal of Molecular Sciences, 8, 950–988.

  29. Hanhineva, K., Rogachev, I., Kokko, H., Mintz-Oron, S., Venger, I., Kärenlampi, S., et al. (2008). Non-targeted analysis of spatial metabolite composition in strawberry (Fragaria × ananassa) flowers. Phytochemistry, 69, 2463–2481.

  30. Hung, L. M., Chen, J. K., Huang, S. S., Lee, R. S., & Su, M. J. (2000). Cardioprotective effect of resveratrol, a natural antioxidant derived from grapes. Cardiovascular Research, 47, 549–555.

  31. Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W., et al. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 275, 218–220.

  32. Jean-Denis, J. B., Pezet, R., & Tabacchi, R. (2006). Rapid analysis of stilbenes and derivatives from downy mildew-infected grapevine leaves by liquid chromatography–atmospheric pressure photoionisation mass spectrometry. Journal of Chromatography A, 1112, 263–268.

  33. Jerkovic, V., Nguyen, F., Nizet, S., & Collin, S. (2007). Combinatorial synthesis, reversed-phase and normal-phase high-performance liquid chromatography elution data and liquid chromatography/positive atmospheric pressure chemical ionization tandem mass spectra of methoxylated and glycosylated resveratrol analogues. Rapid Communications in Mass Spectrometry, 21, 2456–2466.

  34. Kerem, Z., Regev-Shoshani, G., Flaishman, M. A., & Sivan, L. (2003). Resveratrol and two monomethylated stilbenes from Israeli Rumex bucephalophorus and their antioxidant potential. Journal of Natural Products, 66, 1270–1272.

  35. Krauss, M., Singer, H., & Hollender, J. (2010). LC–high resolution MS in environmental analysis: from target screening to the identification of unknowns. Analytical and Bioanalytical Chemistry, 397, 943–951.

  36. Kueger, S., Steinhauser, D., Willmitzer, L., & Giavalisco, P. (2012). High-resolution plant metabolomics: From mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions. The Plant Journal, 70, 39–50.

  37. Larrosa, M., Tomás-Barberán, F. A., & Espín, J.-C. (2004). The grape and wine polyphenol piceatannol is a potent inducer of apoptosis in human SK-Mel-28 melanoma cells. European Journal of Nutrition, 43, 275–284.

  38. Manach, C., Williamson, G., Morand, C., Scalbert, A., & Rémésy, (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review. The American Journal of Clinical Nutrition, 81, 230S–242S.

  39. Mattivi, F., Vrhovsek, U., Malacarne, G., Masuero, D., Zulini, L., Stefanini, M., et al. (2011). Profiling of resveratrol oligomers, important stress metabolites, accumulating in the leaves of hybrid Vitis vinifera (Merzling × Teroldego) genotypes infected with Plasmopara viticola. Journal of Agricultural and Food Chemistry, 59, 5364–5375.

  40. Mattoli, L., Cangi, F., Maidecchi, A., Ghiara, C., Ragazzi, E., Tubaro, M., et al. (2006). Metabolomic fingerprinting of plant extracts. Journal of Mass Spectrometry, 41, 1534–1545.

  41. Mazzotti, F., Di Donna, L., Benabdelkamel, H., Gabriele, B., Napoli, A., & Sindona, G. (2010). The assay of pterostilbene in spiked matrices by liquid chromatography tandem mass spectrometry and isotope dilution method. Journal of Mass Spectrometry, 45, 358–363.

  42. Monagas, M., Suárez, R., Gómez-Cordovés, C., & Bartolomé, B. (2005). Simultaneous determination of nonanthocyanin phenolic compounds in red wines by HPLC-DAD/ESI-MS. American Journal of Enology and Viticulture, 56, 139–147.

  43. Pace-Asciak, C. R., Hahn, S. E., Diamandis, E. P., Soleas, G., & Goldberg, D. M. (1995). The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: implications for protection against coronary heart disease. Clinica Chimica Acta, 235, 207–219.

  44. Pawlus, A. D., Sahli, R., Bisson, J., Rivière, C., Delaunay, J.-C., Richard, T., et al. (2013). Stilbenoid profiles of canes from Vitis and Muscadinia species. Journal of Agricultural and Food Chemistry, 61, 501–511.

  45. Pawlus, A. D., Waffo-Téguo, P., & Mérillon, J.-M. (2012). Stilbenoid chemistry from wine and the genus Vitis, a review. Journal International des Sciences de la Vigne et du Vin, 45, 57–111.

  46. Pezet, R., Perret, C., Jean-Denis, J. B., Tabacchi, R., Gindro, K., & Viret, O. (2003). Delta-viniferin, a resveratrol dehydrodimer: one of the major stilbenes synthesized by stressed grapevine leaves. Journal of Agricultural and Food Chemistry, 51, 5488–5492.

  47. Püssa, T., Floren, J., Kuldkepp, P., & Raal, A. (2006). Survey of grapevine Vitis vinifera stem polyphenols by liquid chromatography–diode array detection–tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 54, 7488–7494.

  48. Renaud, S., & de Lorgeril, M. (1992). Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet, 339, 1523–1526.

  49. Romero-Pérez, A. I., Ibern-Gómez, M., Lamuela-Raventós, R. M., & de La Torre-Boronat, M. C. (1999). Piceid, the major resveratrol derivative in grape juices. Journal of Agricultural and Food Chemistry, 47, 1533–1536.

  50. Sana, T. R., Roark, J. C., Li, X., Waddell, K., & Fischer, S. M. (2008). Molecular formula and Metlin personal metabolite database matching applied to the identification of compounds generated by LC/TOF-MS. Journal of Biomolecular Techniques, 9, 258–266.

  51. Sbaghi, M., Jeandet, P., Bessis, R., & Leroux, P. (1996). Degradation of stilbene-type phytoalexins in relation to the pathogenicity of Botrytis cinerea to grapevines. Plant Pathology, 45, 139–144.

  52. Scalbert, A., Brennan, L., Fiehn, O., Hankemeier, T., Kristal, B. S., van Ommen, B., et al. (2009). Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics, 5, 435–458.

  53. Stella, L., De Rosso, M., Panighel, A., Dalla Vedova, A., Flamini, R., & Traldi, P. (2008). Collisionally induced fragmentation of [M−H] species of resveratrol and piceatannol investigated by deuterium labelling and accurate mass measurements. Rapid Communications in Mass Spectrometry, 22, 3867–3872.

  54. Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221.

  55. Swanson-Mungerson, M., Ikeda, M., Lev, L., Longnecker, R., & Portis, T. (2003). Identification of latent membrane protein 2A (LMP2A) specific targets for treatment and eradication of Epstein-Barr virus (EBV)-associated diseases. Journal of Antimicrobial Chemotherapy, 52, 152–154.

  56. Takaya, Y., Terashima, K., Yan, K.-X., & Niwa, M. (2003). (+)-Viniferol D, a new stilbenetrimer from the stem of Vitis vinifera ‘Kyohou’. Heterocycles, 60, 1433–1439.

  57. Vaclavik, L., Lacina, O., Hajslova, J., & Zweigenbaum, J. (2011). The use of high performance liquid chromatography-quadrupole time-of-flight mass spectrometry coupled to advanced data mining and chemometric tools for discrimination and classification of red wines according to their variety. Analytica Chimica Acta, 685, 45–51.

  58. Vitrac, X., Bornet, A., Vanderlinde, R., Valls, J., Tristan, R., Delaunay, J.-C., et al. (2005). Determination of Stilbenes (delta-viniferin, trans-astringin, trans-piceid, cis- and trans-resveratrol, E-viniferin) in Brazilian Wines. Journal of Agricultural and Food Chemistry, 53, 5664–5669.

  59. Vitrac, X., Castagnino, C., Waffo-Téguo, P., Delaunay, J.-C., Vercauteren, J., Monti, J.-P., et al. (2001). Polyphenols newly extracted in red wine from southwestern France by centrifugal partition chromatography. Journal of Agricultural and Food Chemistry, 49, 5934–5938.

  60. Waffo-Téguo, P., Lee, D., Cuendet, M., Mérillon, J.-M., Pezzuto, J. M., & Kinghorn, A. D. (2001). Two new stilbene dimer glucosides from grape (Vitis vinifera) cell cultures. Journal of Natural Products, 64, 136–138.

Download references

Acknowledgments

VIGNETO Project, financial support from MiPAAF, project duration 2011–2013.

Author information

Correspondence to Riccardo Flamini.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Flamini, R., De Rosso, M., De Marchi, F. et al. An innovative approach to grape metabolomics: stilbene profiling by suspect screening analysis. Metabolomics 9, 1243–1253 (2013). https://doi.org/10.1007/s11306-013-0530-0

Download citation

Keywords

  • Stilbenes
  • Grape
  • UPLC
  • Time of flight mass spectrometry
  • Metabolomics
  • Suspect screening analysis