, Volume 9, Issue 3, pp 708–721 | Cite as

Post-ejaculatory changes in the metabolic status of rat spermatozoa as measured by GC-MS

  • Mark A. Baker
  • Anita S. Weinberg
  • Louise Hetherington
  • Tony Velkov
  • R. John Aitken
Original Article


Analysis of low molecular weight or metabolic compounds can provide deeper insights into the biochemical pathways regulating normal cell function. Here we report, for the first time, a method to extract a large number of metabolites from rat spermatozoa, which were analysed using gas chromatography mass spectrometry. Based on the retention time index and at least 3–5 fragment qualifier ions, we positively identified 71 compounds, 2 of which we could not find any match to the database. Several different classes of metabolic compounds including amino acids, sugars, fatty acids, sterols and lipids were found. In order to gain insight into sperm function, we extracted metabolites from sperm cells that were in the initial stages of the post-testicular sperm maturation process known as capacitation, and compared the relative intensity of each compound to non-capacitated spermatozoa through the use of an internal standard. We could clearly demonstrate significant down regulation of cholesterol, a hallmark of capacitating cells, being less abundant in the more mature cells. In addition, several monosaccharides including glucose, fructose, sorbitol, galactose and the polyol myo-Inositol decreased in their abundance as sperm begin to capacitate. Interestingly, galactose was able to support sperm motility and an increase in the level of tyrosine phosphorylation, however this came at the expense of longevity of these cells when compared to glucose.


Galactose Rat Spermatozoa Capacitation Metabolomics, GC-MS Cholesterol 



The author wishes to acknowledge the work of the ABRF, Kristy Taubman and Tegen Curby in the preparation of the sample for this work. This work was supported by the NHMRC project grant 569258.


  1. Aitken, R. J., Buckingham, D. W., Harkiss, D., Paterson, M., Fisher, H., & Irvine, D. S. (1996). The extragenomic action of progesterone on human spermatozoa is influenced by redox regulated changes in tyrosine phosphorylation during capacitation. Molecular and Cellular Endocrinology, 117, 83–93.PubMedCrossRefGoogle Scholar
  2. Aitken, R. J., Harkiss, D., Knox, W., Paterson, M., & Irvine, S. (1998). On the cellular mechanisms by which the bicarbonate ion mediates the extragenomic action of progesterone on human spermatozoa. Biology of Reproduction, 58, 186–196.PubMedCrossRefGoogle Scholar
  3. Aitken, R. J., Ryan, A. L., Baker, M. A., & McLaughlin, E. A. (2004). Redox activity associated with the maturation and capacitation of mammalian spermatozoa. Free Radical Biology & Medicine, 36, 994–1010.CrossRefGoogle Scholar
  4. Baker, M. A. (2011). The ‘omics revolution and our understanding of sperm cell biology. Asian Journal of Andrology, 13, 6–10.PubMedCrossRefGoogle Scholar
  5. Baker, M. A., & Aitken, R. J. (2009). Proteomic insights into spermatozoa: critiques, comments and concerns. Expert Review of Proteomics, 6, 691–705.PubMedCrossRefGoogle Scholar
  6. Baker, M. A., Hetherington, L., & Aitken, R. J. (2006). Identification of SRC as a key PKA-stimulated tyrosine kinase involved in the capacitation-associated hyperactivation of murine spermatozoa. Journal of Cell Science, 119, 3182–3192.PubMedCrossRefGoogle Scholar
  7. Baker, M. A., Hetherington, L., Curry, B., & Aitken, R. J. (2009a). Phosphorylation and consequent stimulation of the tyrosine kinase c-Abl by PKA in mouse spermatozoa; its implications during capacitation. Developmental Biology, 333, 57–66.PubMedCrossRefGoogle Scholar
  8. Baker, M. A., Hetherington, L., Ecroyd, H., Roman, S. D., & Aitken, R. J. (2004). Analysis of the mechanism by which calcium negatively regulates the tyrosine phosphorylation cascade associated with sperm capacitation. Journal of Cell Science, 117, 211–222.PubMedCrossRefGoogle Scholar
  9. Baker, M. A., Hetherington, L., Reeves, G. M., & Aitken, R. J. (2008a). The mouse sperm proteome characterized via IPG strip prefractionation and LC-MS/MS identification. Proteomics, 8, 1720–1730.PubMedCrossRefGoogle Scholar
  10. Baker, M. A., Hetherington, L., Reeves, G., Muller, J., & Aitken, R. J. (2008b). The rat sperm proteome characterized via IPG strip prefractionation and LC-MS/MS identification. Proteomics, 8, 2312–2321.PubMedCrossRefGoogle Scholar
  11. Baker, M. A., Lewis, B., Hetherington, L., & Aitken, R. J. (2003). Development of the signalling pathways associated with sperm capacitation during epididymal maturation. Molecular Reproduction and Development, 64, 446–457.PubMedCrossRefGoogle Scholar
  12. Baker, M.A., Nixon, B., Naumovski, N., Aitken, R.J. (2012). Proteomic insights into the maturation and capacitation of mammalian spermatozoa. Systems Biology in Reprodroductive Medicine, 58, 211–217.Google Scholar
  13. Baker, M. A., Reeves, G., Hetherington, L., & Aitken, R. J. (2009b). Analysis of proteomic changes associated with sperm capacitation through the combined use of IPG-strip pre-fractionation followed by RP chromatography LC-MS/MS analysis. Proteomics, 10, 482–495.CrossRefGoogle Scholar
  14. Baker, M. A., Reeves, G., Hetherington, L., Muller, J., Baur, I., & Aitken, R. J. (2007). Identification of gene products present in Triton X-100 soluble and insoluble fractions of human spermatozoa lysates using LC-MS/MS analysis. Proteomics, Clinical Applications, 1, 524–532.CrossRefGoogle Scholar
  15. Baker, M. A., Smith, N. D., Hetherington, L., Taubman, K., Graham, M. E., Robinson, P. J., et al. (2010). Label-free quantitation of phosphopeptide changes during rat sperm capacitation. Journal of Proteome Research, 9, 718–729.PubMedCrossRefGoogle Scholar
  16. Belmonte, S. A., Lopez, C. I., Roggero, C. M., De Blas, G. A., Tomes, C. N., & Mayorga, L. S. (2005). Cholesterol content regulates acrosomal exocytosis by enhancing Rab3A plasma membrane association. Developmental Biology, 285, 393–408.PubMedCrossRefGoogle Scholar
  17. Biggers, J. D., Whitten, W. K., & Whittingham, D. G. (1971). The culture of mouse embryos in vitro (pp. 86–94). San Francisco: Freeman.Google Scholar
  18. Bragg, P. W., & Handel, M. A. (1979). Protein synthesis in mouse spermatozoa. Biology of Reproduction, 20, 333–337.PubMedCrossRefGoogle Scholar
  19. Breitbart, H. (2003). Signaling pathways in sperm capacitation and acrosome reaction. Celular and Molecular Biology (Noisy-le-grand), 49, 321–327.Google Scholar
  20. Brouwers, J. F., Boerke, A., Silva, P. F., Garcia-Gil, N., van Gestel, R. A., Helms, J. B., et al. (2011). Mass spectrometric detection of cholesterol oxidation in bovine sperm. Biology of Reproduction, 85, 128–136.PubMedCrossRefGoogle Scholar
  21. Cao, W., Aghajanian, H. K., Haig-Ladewig, L. A., & Gerton, G. L. (2009). Sorbitol can fuel mouse sperm motility and protein tyrosine phosphorylation via sorbitol dehydrogenase. Biology of Reproduction, 80, 124–133.PubMedCrossRefGoogle Scholar
  22. Cao, W., Gerton, G. L., & Moss, S. B. (2006). Proteomic profiling of accessory structures from the mouse sperm flagellum. Molecular and Cellular Proteomics, 5, 801–810.PubMedCrossRefGoogle Scholar
  23. Chang, M. C. (1951). Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature, 168, 697–698.PubMedCrossRefGoogle Scholar
  24. Cross, N. L. (1998). Role of cholesterol in sperm capacitation. Biology of Reproduction, 59, 7–11.PubMedCrossRefGoogle Scholar
  25. de Lamirande, E., Harakat, A., & Gagnon, C. (1998). Human sperm capacitation induced by biological fluids and progesterone, but not by NADH or NADPH, is associated with the production of superoxide anion. Journal of Andrology, 19, 215–225.PubMedGoogle Scholar
  26. Esposito, G., Jaiswal, B. S., Xie, F., Krajnc-Franken, M. A., Robben, T. J., Strik, A. M., et al. (2004). Mice deficient for soluble adenylyl cyclase are infertile because of a severe sperm-motility defect. Proceedings of National Academic Sciences of the United States of America, 101, 2993–2998.CrossRefGoogle Scholar
  27. Evans, R. W., & Setchell, B. P. (1978). The effect of rete testis fluid on the metabolism of testicular spermatozoa. Journal of Reproduction and Fertility, 52, 15–20.PubMedCrossRefGoogle Scholar
  28. Hamamah, S., Seguin, F., Barthelemy, C., Akoka, S., Le Pape, A., Lansac, J., et al. (1993). 1H nuclear magnetic resonance studies of seminal plasma from fertile and infertile men. Journal of Reproduction and Fertility, 97, 51–55.PubMedCrossRefGoogle Scholar
  29. Harrison, R. A., & Gadella, B. M. (2005). Bicarbonate-induced membrane processing in sperm capacitation. Theriogenology, 63, 342–351.PubMedCrossRefGoogle Scholar
  30. Hegeman, A. D. (2010). Plant metabolomics–meeting the analytical challenges of comprehensive metabolite analysis. Briefings in Functional Genomics, 9, 139–148.PubMedCrossRefGoogle Scholar
  31. Hernandez-Perez, O., Luna, G., & Reyes, A. (1983). Re-evaluation of the role of spermatozoa as inducers of protein synthesis by the rabbit endometrium. Archives of Andrology, 11, 239–243.PubMedCrossRefGoogle Scholar
  32. Jiye, A., Trygg, J., Gullberg, J., Johansson, A. I., Jonsson, P., Antti, H., et al. (2005). Extraction and GC/MS analysis of the human blood plasma metabolome. Analytical Chemistry, 77, 8086–8094.CrossRefGoogle Scholar
  33. Kervancioglu, M. E., Saridogan, E., Aitken, R. J., & Djahanbakhch, O. (2000). Importance of sperm-to-epithelial cell contact for the capacitation of human spermatozoa in fallopian tube epithelial cell cocultures. Fertility and Sterility, 74, 780–784.PubMedCrossRefGoogle Scholar
  34. Kind, T., Wohlgemuth, G., Lee do, Y., Lu, Y., Palazoglu, M., Shahbaz, S., et al. (2009). FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Analytical Chemistry, 81, 10038–10048.PubMedCrossRefGoogle Scholar
  35. Koal, T., & Deigner, H. P. (2010). Challenges in mass spectrometry based targeted metabolomics. Current Molecular Medicine, 10, 216–226.PubMedCrossRefGoogle Scholar
  36. Livera, G., Xie, F., Garcia, M. A., Jaiswal, B., Chen, J., Law, E., et al. (2005). Inactivation of the mouse adenylyl cyclase 3 gene disrupts male fertility and spermatozoon function. Molecular Endocrinology, 19, 1277–1290.PubMedCrossRefGoogle Scholar
  37. Martinez-Heredia, J., Estanyol, J. M., Ballesca, J. L., & Oliva, R. (2006). Proteomic identification of human sperm proteins. Proteomics, 6, 4356–4369.PubMedCrossRefGoogle Scholar
  38. Mitchell, L. A., Nixon, B., Baker, M. A., & Aitken, R. J. (2008). Investigation of the role of SRC in capacitation-associated tyrosine phosphorylation of human spermatozoa. Molecular Human Reproduction, 14, 235–243.PubMedCrossRefGoogle Scholar
  39. Nolan, M. A., Babcock, D. F., Wennemuth, G., Brown, W., Burton, K. A., & McKnight, G. S. (2004). Sperm-specific protein kinase A catalytic subunit C{alpha}2 orchestrates cAMP signaling for male fertility. Proceedings of National Academy of Sciences of the United States of America, 101, 13483–13488.CrossRefGoogle Scholar
  40. Nordstrom, A., & Lewensohn, R. (2010). Metabolomics: moving to the clinic. Journal of Neuroimmune Pharmacology, 5, 4–17.PubMedCrossRefGoogle Scholar
  41. O’Hagan, S., Dunn, W. B., Knowles, J. D., Broadhurst, D., Williams, R., Ashworth, J. J., et al. (2007). Closed-loop, multiobjective optimization of two-dimensional gas chromatography/mass spectrometry for serum metabolomics. Analytical Chemistry, 79, 464–476.PubMedCrossRefGoogle Scholar
  42. O’Shea, T., & Voglmayr, J. K. (1970). Metabolism of glucose, lactate, and acetate by testicular and ejaculated spermatozoa of the ram. Biology of Reproduction, 2, 326–332.PubMedCrossRefGoogle Scholar
  43. Pujianto, D. A., Curry, B. J., & Aitken, R. J. (2010). Prolactin exerts a prosurvival effect on human spermatozoa via mechanisms that involve the stimulation of Akt phosphorylation and suppression of caspase activation and capacitation. Endocrinology, 151, 1269–1279.PubMedCrossRefGoogle Scholar
  44. Saito, K., & Matsuda, F. (2010). Metabolomics for functional genomics, systems biology, and biotechnology. Annual Review of Plant Biology, 61, 463–489.PubMedCrossRefGoogle Scholar
  45. Schiller, J., Arnhold, J., Glander, H. J., & Arnold, K. (2000). Lipid analysis of human spermatozoa and seminal plasma by MALDI-TOF mass spectrometry and NMR spectroscopy—effects of freezing and thawing. Chemistry and Physics of Lipids, 106, 145–156.PubMedCrossRefGoogle Scholar
  46. Scott, T. W., Voglmayr, J. K., & Setchell, B. P. (1967). Lipid composition and metabolism in testicular and ejaculated ram spermatozoa. The Biochemistry Journal, 102, 456–461.Google Scholar
  47. Shoemaker, J.D. (2010). One-step metabolomics: carbohydrates, organic and amino acids quantified in a single procedure. Journal of Visualized Experiments. Google Scholar
  48. Sosnik, J., Miranda, P. V., Spiridonov, N. A., Yoon, S. Y., Fissore, R. A., Johnson, G. R., et al. (2009). Tssk6 is required for Izumo relocalization and gamete fusion in the mouse. Journal of Cell Science, 122, 2741–2749.PubMedCrossRefGoogle Scholar
  49. Vinayavekhin, N., Homan, E. A., & Saghatelian, A. (2010). Exploring disease through metabolomics. ACS Chemical Biology, 5, 91–103.PubMedCrossRefGoogle Scholar
  50. Visconti, P. E., Galantino-Homer, H., Ning, X., Moore, G. D., Valenzuela, J. P., Jorgez, C. J., et al. (1999). Cholesterol efflux-mediated signal transduction in mammalian sperm. beta-Cyclodextrins initiate transmembrane signaling leading to an increase in protein tyrosine phosphorylation and capacitation. Journal of Biological Chemistry, 274, 3235–3242.PubMedCrossRefGoogle Scholar
  51. Visconti, P. E., Moore, G. D., Bailey, J. L., Leclerc, P., Connors, S. A., Pan, D., et al. (1995). Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development, 121, 1139–1150.PubMedGoogle Scholar
  52. Visconti, P. E., Muschietti, J. P., Flawia, M. M., & Tezon, J. G. (1990). Bicarbonate dependence of cAMP accumulation induced by phorbol esters in hamster spermatozoa. Biochimica et Biophysica Acta, 1054, 231–236.PubMedCrossRefGoogle Scholar
  53. Voglmayr, J. K., Murdoch, R. N., & White, I. G. (1970). Metabolism of ram testicular spermatozoa in the presence of testosterone and related steroids. Acta Endocrinologica, 65, 565–576.PubMedGoogle Scholar
  54. Voglmayr, J. K., Scott, T. W., Setchell, B. P., & Waites, G. M. (1967). Metabolism of testicular spermatozoa and characteristics of testicular fluid collected from conscious rams. Journal of Reproduction and Fertility, 14, 87–99.PubMedCrossRefGoogle Scholar
  55. Voglmayr, J. K., & White, I. G. (1971). Synthesis and metabolism of myoinositol in testicular and ejaculated spermatozoa of the ram. Journal of Reproduction and Fertility, 24, 29–37.PubMedCrossRefGoogle Scholar
  56. Voglmayr, J. K., & White, I. G. (1979). Effects of rete testis and epididymal fluid on the metabolism and motility of testicular and post-testicular spermatozoa of the ram. Biology of Reproduction, 20, 288–293.PubMedCrossRefGoogle Scholar
  57. Xie, F., Garcia, M. A., Carlson, A. E., Schuh, S. M., Babcock, D. F., Jaiswal, B. S., et al. (2006). Soluble adenylyl cyclase (sAC) is indispensable for sperm function and fertilization. Developmental Biology, 296, 353–362.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Mark A. Baker
    • 1
  • Anita S. Weinberg
    • 1
  • Louise Hetherington
    • 1
  • Tony Velkov
    • 2
  • R. John Aitken
    • 1
  1. 1.Priority Research Centre in Reproductive Biology, University of Newcastle Research Fellow, School of Environmental and Life ScienceUniversity of NewcastleCallaghanAustralia
  2. 2.Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleAustralia

Personalised recommendations