Advertisement

Metabolomics

, Volume 9, Issue 2, pp 349–359 | Cite as

A co-culturing/metabolomics approach to investigate chemically mediated interactions of planktonic organisms reveals influence of bacteria on diatom metabolism

  • Carsten Paul
  • Michaela A. Mausz
  • Georg PohnertEmail author
Original Article

Abstract

Chemically mediated interactions are hypothesized to be essential for ecosystem functioning as co-occurring organisms can influence the performance of each other by metabolic means. A metabolomics approach can support a better understanding of such processes but many problems cannot be addressed due to a lack of appropriate co-culturing and sampling strategies. This is particularly true for planktonic organisms that live in complex but very dilute communities in the open water. Here we present a co-culturing device that allows culturing of microalgae and bacteria that are physically separated but can exchange dissolved or colloidal chemical signals. Identical growth conditions for both partners as well as high metabolite diffusion rates between the culturing chambers are ensured. This setup allowed us to perform a metabolomic survey of the effect of the bacterium Dinoroseobacter shibae on the diatom Thalassiosira pseudonana. GC–MS measurements revealed a pronounced influence of the bacterium on the metabolic profile of T. pseudonana cells with especially intracellular amino acids being up-regulated in co-cultures. Despite the influence on diatom metabolism, the bacterium has little influence on the growth of the algae. This might indicate that the observed metabolic changes represent an adaptive response of the diatoms. Such interactions might be crucial for metabolic fluxes within plankton communities.

Keywords

Diatom Metabolomics Plankton interactions Co-culture Thalassiosira pseudonana 

Notes

Acknowledgments

We acknowledge the Jena School for Microbial Communication (JSMC) and the International Leibniz Research School for Microbial and Biomolecular Interactions for grants to CP and MAM. Further we acknowledge financial support within the framework of a Lichtenberg Professorship. The lab of US Schubert is acknowledged for access to the flow cytometry facilities.

Supplementary material

11306_2012_453_MOESM1_ESM.xlsx (81 kb)
Supplementary material 1 (XLSX 81 kb)

References

  1. Admiraal, W., Laane, R., & Peletier, H. (1984). Participation of diatoms in the amino acid cycle of coastal waters; uptake and excretion in cultures. Marine Ecology-Progress Series, 15(3), 303–306.CrossRefGoogle Scholar
  2. Admiraal, W., Peletier, H., & Laane, R. (1986). Nitrogen metabolism of marine planktonic diatoms—excretion, assimilation and cellular pools of free amino-acids in 7 species with different cell size. Journal of Experimental Marine Biology and Ecology, 98(3), 241–263.CrossRefGoogle Scholar
  3. Anderson, M. J., & Willis, T. J. (2003). Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecology, 84(2), 511–525.CrossRefGoogle Scholar
  4. Armbrust, E. V., Berges, J. A., Bowler, C., Green, B. R., Martinez, D., Putnam, N. H., et al. (2004). The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science, 306(5693), 79–86.PubMedCrossRefGoogle Scholar
  5. Bates, S. S., Douglas, D. J., Doucette, G. J., & Leger, C. (1995). Enhancement of domoic acid production by reintroducing bacteria to axenic cultures of the diatom Pseudo-nitzschia multiseries. Natural Toxins, 3(6), 428–435.PubMedCrossRefGoogle Scholar
  6. Beardall, J., Berman, T., Heraud, P., Omo Kadiri, M., Light, B. R., Patterson, G., et al. (2001). A comparison of methods for detection of phosphate limitation in microalgae. Aquatic Sciences-Research Across Boundaries, 63(1), 107–121.CrossRefGoogle Scholar
  7. Bruckner, C. G., Rehm, C., Grossart, H. P., & Kroth, P. G. (2011). Growth and release of extracellular organic compounds by benthic diatoms depend on interactions with bacteria. Environmental Microbiology, 13(4), 1052–1063.PubMedCrossRefGoogle Scholar
  8. Cole, J. J. (1982). Interactions between bacteria and algae in aquatic ecosystems. Annual Review of Ecology and Systematics, 13(1), 291–314.CrossRefGoogle Scholar
  9. Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J., & Smith, A. G. (2005). Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature, 438(7064), 90–93.PubMedCrossRefGoogle Scholar
  10. Field, C. B., Behrenfeld, M. J., Randerson, J. T., & Falkowski, P. (1998). Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 281(5374), 237–240.PubMedCrossRefGoogle Scholar
  11. Flynn, K. J., & Syrett, P. J. (1986). Utilization of l-lysine and l-arginine by the diatom Phaeodactylum tricornutum. Marine Biology, 90(2), 159–163.CrossRefGoogle Scholar
  12. Flynn, K. J., & Wright, C. R. N. (1986). The simultaneous assimilation of ammonium and l-arginine by the marine diatom Phaeodactylum tricornutum Bohlin. Journal of Experimental Marine Biology and Ecology, 95(3), 257–269.CrossRefGoogle Scholar
  13. Gehrke, C. W., & Leimer, K. (1971). Trimethylsilylation of amino acids—derivatization and chromatography. Journal of Chromatography, 57(2), 219–238.PubMedGoogle Scholar
  14. Groene, T. (1995). Biogenic production and consumption of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the marine pelagic zone—a review. Journal of Marine Systems, 6(3), 191–209.CrossRefGoogle Scholar
  15. Ianora, A., Bentley, M. G., Caldwell, G. S., Casotti, R., Cembella, A. D., Engstrom-Ost, J., et al. (2011). The relevance of marine chemical ecology to plankton and ecosystem function: An emerging field. Marine Drugs, 9(9), 1625–1648.PubMedCrossRefGoogle Scholar
  16. Ianora, A., Miralto, A., Poulet, S. A., Carotenuto, Y., Buttino, I., Romano, G., et al. (2004). Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature, 429(6990), 403–407.PubMedCrossRefGoogle Scholar
  17. Jensen, A., Rystad, B., & Skoglund, L. (1972). The use of dialysis culture in phytoplankton studies. Journal of Experimental Marine Biology and Ecology, 8(3), 241–248.CrossRefGoogle Scholar
  18. Kobayashi, K., Takata, Y., & Kodama, M. (2009). Direct contact between Pseudo-nitzschia multiseries and bacteria is necessary for the diatom to produce a high level of domoic acid. Fisheries Science, 75(3), 771–776.CrossRefGoogle Scholar
  19. Kolber, Z., Zehr, J., & Falkowski, P. (1988). Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II. Plant Physiology, 88(3), 923.PubMedCrossRefGoogle Scholar
  20. Legrand, C., Rengefors, K., Fistarol, G. O., & Granéli, E. (2003). Allelopathy in phytoplankton—biochemical, ecological and evolutionary aspects. Phycologia, 42(4), 406–419.CrossRefGoogle Scholar
  21. Leimer, K. R., Rice, R. H., & Gehrke, C. W. (1977). Complete mass-spectra of N-trifluoroacetyl-N-butyl esters of amino acids. Journal of Chromatography, 141(2), 121–144.PubMedCrossRefGoogle Scholar
  22. Linares, F. (2006). Effect of dissolved free amino acids (DFAA) on the biomass and production of microphytobenthic communities. Journal of Experimental Marine Biology and Ecology, 330(2), 469–481.CrossRefGoogle Scholar
  23. Lippemeier, S., Hartig, P., & Colijn, F. (1999). Direct impact of silicate on the photosynthetic performance of the diatom Thalassiosira weissflogii assessed by on- and off-line PAM fluorescence measurements. Journal of Plankton Research, 21(2), 269–283.CrossRefGoogle Scholar
  24. Liu, S., Guo, Z., Li, T., Huang, H., & Lin, S. (2011). Photosynthetic efficiency, cell volume, and elemental stoichiometric ratios in Thalassirosira weissflogii under phosphorus limitation. Chinese Journal of Oceanology and Limnology, 29(5), 1048–1056.CrossRefGoogle Scholar
  25. Maier, I., & Calenberg, M. (1994). Effect of extracellular Ca2+ and Ca2+ antagonists on the movement and chemoorientation of male gametes of Ectocarpus siliculosus (Phaeophyceae). Botanica Acta, 107, 451–460.Google Scholar
  26. Matsuo, Y., Imagawa, H., Nishizawa, M., & Shizuri, Y. (2005). Isolation of an algal morphogenesis inducer from a marine bacterium. Science, 307(5715), 1598.PubMedCrossRefGoogle Scholar
  27. Mayali, X., & Azam, F. (2004). Algicidal bacteria in the sea and their impact on algal blooms. Journal of Eukaryotic Microbiology, 51(2), 139–144.PubMedCrossRefGoogle Scholar
  28. McVeigh, I., & Brown, W. H. (1954). In vitro growth of Chlamydomonas chlamydogama Bold and Haematococcus pluvialis Flotow em. Wille in mixed cultures. Bulletin of the Torrey Botanical Club, 81(3), 218–233.CrossRefGoogle Scholar
  29. Myklestad, S., Holm-Hansen, O., Vårum, K. M., & Volcani, B. E. (1989). Rate of release of extracellular amino acids and carbohydrates from the marine diatom Chaetoceros affinis. Journal of Plankton Research, 11(4), 763–773.CrossRefGoogle Scholar
  30. Nilsson, C., & Sundback, K. (1996). Amino acid uptake in natural microphytobenthic assemblages studied by microautoradiography. Hydrobiologia, 332(2), 119–129.CrossRefGoogle Scholar
  31. Nylund, G. M., Persson, F., Lindegarth, M., Cervin, G., Hermansson, M., & Pavia, H. (2010). The red alga Bonnemaisonia asparagoides regulates epiphytic bacterial abundance and community composition by chemical defence. FEMS Microbiology Ecology, 71(1), 84–93.PubMedCrossRefGoogle Scholar
  32. Nylund, G. M., Weinberger, F., Rempt, M., & Pohnert, G. (2011). Metabolomic assessment of induced and activated chemical defence in the invasive red alga Gracilaria vermiculophylla. PLoS One, 6(12), e29359.PubMedCrossRefGoogle Scholar
  33. Paul, C., Barofsky, A., Vidoudez, C., & Pohnert, G. (2009). Diatom exudates influence metabolism and cell growth of co-cultured diatom species. Marine Ecology-Progress Series, 389, 61–70.CrossRefGoogle Scholar
  34. Paul, C., & Pohnert, G. (2011). Interactions of the algicidal bacterium Kordia algicida with diatoms: Regulated protease excretion for specific algal lysis. PLoS One, 6(6), e21032.PubMedCrossRefGoogle Scholar
  35. Pohnert, G. (2000). Wound-activated chemical defense in unicellular planktonic algae. Angewandte Chemie International Edition, 39(23), 4352–4354.Google Scholar
  36. Pohnert, G. (2012). How to explore the sometimes unusual chemistry of aquatic defence chemicals. In C. Brönmark, & L. A. Hansson (Eds.), Chemical Ecology in Aquatic Systems: Oxford University Press.Google Scholar
  37. Pohnert, G., Steinke, M., & Tollrian, R. (2007). Chemical cues, defence metabolites and the shaping of pelagic interspezific interactions. Trends in Ecology & Evolution, 22(4), 198–204.CrossRefGoogle Scholar
  38. Roy, S., & Legendre, L. (1979). DCMU—enhanced fluorescence as an index of photosynthetic activity in phytoplankton. Marine Biology, 55(2), 93–101.CrossRefGoogle Scholar
  39. Selander, E., Jakobsen, H. H., Lombard, F., & Kiorboe, T. (2011). Grazer cues induce stealth behavior in marine dinoflagellates. Proceedings of the National Academy of Sciences of the United States of America, 108(10), 4030–4034.PubMedCrossRefGoogle Scholar
  40. Selander, E., Thor, P., Toth, G., & Pavia, H. (2006). Copepods induce paralytic shellfish toxin production in marine dinoflagellates. Proceedings of the Royal Society B Biological Sciences, 273(1594), 1673–1680.CrossRefGoogle Scholar
  41. Seyedsayamdost, M. R., Case, R. J., Kolter, R., & Clardy, J. (2011). The jekyll-and-hyde chemistry of Phaeobacter gallaeciensis. Nature Chemistry, 3(4), 331–335.PubMedCrossRefGoogle Scholar
  42. Sieg, R. D., Poulson-Ellestad, K. L., & Kubanek, J. (2011). Chemical ecology of the marine plankton. Natural Product Reports, 28(2), 388–399.PubMedCrossRefGoogle Scholar
  43. Spielmeyer, A., & Pohnert, G. (2010). Direct quantification of dimethylsulfoniopropionate (DMSP) with hydrophilic interaction liquid chromatography/mass spectrometry. Journal of Chromatography B, 878(31), 3238–3242.CrossRefGoogle Scholar
  44. Steinke, M., Malin, G., & Liss, P. S. (2002). Trophic interactions in the sea: An ecological role for climate relevant volatiles? Journal of Phycology, 38(4), 630–638.CrossRefGoogle Scholar
  45. Teeling, H., Fuchs, B. M., Becher, D., Klockow, C., Gardebrecht, A., Bennke, C. M., et al. (2012). Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science, 336(6081), 608–611.PubMedCrossRefGoogle Scholar
  46. Van Donk, E., Ianora, A., & Vos, M. (2011). Induced defences in marine and freshwater phytoplankton: A review. Hydrobiologia, 668(1), 3–19.CrossRefGoogle Scholar
  47. Vanelslander, B., Paul, C., Grueneberg, J., Prince, E. K., Gillard, J., Sabbe, K., et al. (2012). Daily bursts of biogenic cyanogen bromide (BrCN) control biofilm formation around a marine benthic diatom. Proceedings of the National Academy of Sciences of the United States of America, 109(7), 2412–2417.PubMedCrossRefGoogle Scholar
  48. Vardi, A., Formiggini, F., Casotti, R., De Martino, A., Ribalet, F., Miralto, A., et al. (2006). A stress surveillance system based on calcium and nitric oxide in marine diatoms. PLoS Biology, 4(3), 411–419.CrossRefGoogle Scholar
  49. Vidoudez, C., Casotti, R., Bastianini, M., & Pohnert, G. (2011). Quantification of dissolved and particulate polyunsaturated aldehydes in the Adriatic Sea. Marine Drugs, 9(4), 500–513.PubMedCrossRefGoogle Scholar
  50. Vidoudez, C., & Pohnert, G. (2008). Growth phase-specific release of polyunsaturated aldehydes by the diatom Skeletonema marinoi. Journal of Plankton Research, 30(11), 1305.CrossRefGoogle Scholar
  51. Vidoudez, C., & Pohnert, G. (2012). Comparative metabolomics of the diatom Skeletonema marinoi in different growth phases. Metabolomics, 8, 654–669.CrossRefGoogle Scholar
  52. Wagner, C., Sefkow, M., & Kopka, J. (2003). Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochemistry, 62(6), 887–900.PubMedCrossRefGoogle Scholar
  53. Wagner-Döbler, I., Ballhausen, B., Berger, M., Brinkhoff, T., Buchholz, I., Bunk, B., et al. (2010). The complete genome sequence of the algal symbiont Dinoroseobacter shibae: A hitchhiker’s guide to life in the sea. ISME Journal, 4(1), 61–77.PubMedCrossRefGoogle Scholar
  54. Wolfe, G. V., Steinke, M., & Kirst, G. O. (1997). Grazing-activated chemical defence in a unicellular marine alga. Nature, 387(6636), 894–897.CrossRefGoogle Scholar
  55. Yamasaki, Y., Nagasoe, S., Matsubara, T., Shikata, T., Shimasaki, Y., Oshima, Y., et al. (2007). Allelopathic interactions between the bacillariophyte Skeletonema costatum and the raphidophyte Heterosigma akashiwo. Marine Ecology-Progress Series, 339, 83.CrossRefGoogle Scholar
  56. Yamasaki, Y., Shikata, T., Nukata, A., Ichiki, S., Nagasoe, S., Matsubara, T., et al. (2009). Extracellular polysaccharide-protein complexes of a harmful alga mediate the allelopathic control it exerts within the phytoplankton community. ISME Journal, 3(7), 808–817.PubMedCrossRefGoogle Scholar
  57. Zhang, J. Z., & Fischer, C. J. (2006). A simplified resorcinol method for direct spectrophotometric determination of nitrate in seawater. Marine Chemistry, 99(1–4), 220–226.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Carsten Paul
    • 1
  • Michaela A. Mausz
    • 1
  • Georg Pohnert
    • 1
    Email author
  1. 1.Department for Bioorganic AnalyticsFriedrich Schiller University JenaJenaGermany

Personalised recommendations