, Volume 9, Supplement 1, pp 92–101 | Cite as

Identification of methylated flavonoid regioisomeric metabolites using enzymatic semisynthesis and liquid chromatography-tandem mass spectrometry

  • Chao Li
  • Adam Schmidt
  • Eran Pichersky
  • Feng Shi
  • A. Daniel Jones
Original Article


Discrimination of isomeric methylated metabolites is an important step toward identifying genes responsible for methylation, but presents substantial challenges because authentic standards are often unavailable and mass spectra of isomers have been considered indistinguishable. In this report, an approach is described for identifying methyl group positions in multiply methylated flavonoid metabolites using combinations of tandem mass spectrometry, liquid chromatography retention, and site-selective methylation by recombinant O-methyltransferases from Solanum habrochaites LA1777. The basis for observed fragment ions in tandem mass spectra of multiply methylated myricetin was further established using enzymatic incorporation of deuterium-labeled methyl groups using S-adenosylmethionine-d3 as precursor.


Tandem mass spectrometry Regioisomer discrimination Methylated flavonoids O-methyltransferase Metabolite profiling Enzymatic semisynthesis 

Supplementary material

11306_2012_451_MOESM1_ESM.docx (319 kb)
Supplementary material 1 (DOCX 263 kb)


  1. Bloor, S. J. (2001). Overview of methods for analysis and identification of flavonoids. In Flavonoids and other polyphenols (Vol. 335, pp. 3–14). San Diego: Academic Press Inc.Google Scholar
  2. Crozier, A., Jensen, E., Lean, M. E. J., & McDonald, M. S. (1997). Quantitative analysis of flavonoids by reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 761, 315–321.CrossRefGoogle Scholar
  3. Cuyckens, F., & Claeys, M. (2004). Mass spectrometry in the structural analysis of flavonoids. Journal of Mass Spectrometry, 39, 1–15.PubMedCrossRefGoogle Scholar
  4. Dakora, F. D., & Phillips, D. A. (1996). Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Physiological and Molecular Plant Pathology, 49, 1–20.CrossRefGoogle Scholar
  5. de Rijke, E., Out, P., Niessen, W. M. A., Ariese, F., Gooijer, C., & Brinkman, U. A. T. (2006). Analytical separation and detection methods for flavonoids. Journal of Chromatography A, 1112, 31–63.PubMedCrossRefGoogle Scholar
  6. Dixon, R. A., Dey, P. M., & Lamb, C. J. (1983). Phytoalexins—Enzymology and molecular biology. Advances in Enzymology and Related Areas of Molecular Biology, 55, 1–136.PubMedGoogle Scholar
  7. Geng, H. M., Zhang, D. Q., Zha, J. P., & Qi, J. L. (2007). Simultaneous HPLC determination of five flavonoids in Flos Inulae. Chromatographia, 66, 271–275.CrossRefGoogle Scholar
  8. Greenham, J., Harborne, J. B., & Williams, C. A. (2003). Identification of lipophilic flavones and flavonols by comparative HPLC, TLC and UV spectral analysis. Phytochemical Analysis, 14, 100–118.PubMedCrossRefGoogle Scholar
  9. Greenham, J., Williams, C., & Harborne, J. B. (1995). Identification of lipophilic flavonols by a combination of chromatographic and spectral techniques. Phytochemical Analysis, 6, 211–217.CrossRefGoogle Scholar
  10. Ibrahim, R. K., Deluca, V., Khouri, H., Latchinian, L., Brisson, L., & Charest, P. M. (1987). Enzymology and compartmentation of polymethylated flavonol glucosides in Chrysosplenium americanum. Phytochemistry, 26, 1237–1245.CrossRefGoogle Scholar
  11. Jacobs, M., & Rubery, P. H. (1988). Naturally occurring auxin transport regulators. Science, 241, 346–349.PubMedCrossRefGoogle Scholar
  12. Justino, G. C., & Vieira, A. J. S. C. (2010). Antioxidant mechanisms of quercetin and myricetin in the gas phase and in solution—A comparison and validation of semi-empirical methods. Journal of Molecular Modeling, 16, 863–876.Google Scholar
  13. Kim, B. G., Jung, B. R., Lee, Y., Hur, H. G., Lim, Y., & Ahn, J. H. (2006). Regiospecific flavonoid 7-O-methylation with Streptomyces avermitilis O-methyltransferase expressed in Escherichia coli. Journal of Agricultural and Food Chemistry, 54, 823–828.PubMedCrossRefGoogle Scholar
  14. Long, S. R. (1989). Rhizobium legume nodulation—Life together in the underground. Cell, 56, 203–214.PubMedCrossRefGoogle Scholar
  15. Ma, Y. L., Li, Q. M., VandenHeuvel, H., & Claeys, M. (1997). Characterization of flavone and flavonol aglycones by collision-induced dissociation tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 11, 1357–1364.CrossRefGoogle Scholar
  16. Mabry, T. J., Markham, K. R., & Thomas, M. B. (1970). The systematic identification of flavonoids. Heidelberg-New York: Springer.CrossRefGoogle Scholar
  17. March, R., & Brodbelt, J. (2008). Analysis of flavonoids: Tandem mass spectrometry, computational methods, and NMR. Journal of Mass Spectrometry, 43, 1581–1617.PubMedCrossRefGoogle Scholar
  18. Markham, K. R. (1989). A reassessment of the data supporting the structures of Blumea malcolmii flavonols. Phytochemistry, 28, 243–244.CrossRefGoogle Scholar
  19. McDowell, E. T., Kapteyn, J., Schmidt, A., Li, C., Kang, J.-H., Descour, A., et al. (2010). Comparative functional genomic analysis of Solanum glandular trichome types. Plant Physiology, 155, 524–539.PubMedCrossRefGoogle Scholar
  20. Merken, H. M., & Beecher, G. R. (2000a). Measurement of food flavonoids by high-performance liquid chromatography: A review. Journal of Agricultural and Food Chemistry, 48, 577–599.PubMedCrossRefGoogle Scholar
  21. Merken, H. M., & Beecher, G. R. (2000b). Liquid chromatographic method for the separation and quantification of prominent flavonoid aglycones. Journal of Chromatography A, 897, 177–184.PubMedCrossRefGoogle Scholar
  22. Middleton, E., & Kandaswami, C. (1993). The impact of plant flavonoids on mammalian biology: Implications for immunity, inflammation and cancer. In I. R. Harborne (Ed.), The flavonoids: Advances in research since 1986 (pp. 619–645). London: Chapman and Hall.Google Scholar
  23. Pellati, F., Orlandini, G., Pinetti, D., & Benvenuti, S. (2011). HPLC-DAD and HPLC-ESI-MS/MS methods for metabolite profiling of propolis extracts. Journal of Pharmaceutical and Biomedical Analysis, 55, 934–948.Google Scholar
  24. Pichersky, E., & Lewinsohn, E. (2011). Convergent evolution in plant specialized metabolism. Annual Review of Plant Biology, 62, 549–566.PubMedCrossRefGoogle Scholar
  25. Polasek, J., Queiroz, E. F., & Hostettmann, K. (2007). On-line identification of phenolic compounds of Trifolium species using HPLC-UV-MS and post-column UV-derivatisation. Phytochemical Analysis, 18, 13–23.PubMedCrossRefGoogle Scholar
  26. Robards, K., & Antolovich, M. (1997). Analytical chemistry of fruit bioflavonoids—A review. Analyst, 122, R11–R34.CrossRefGoogle Scholar
  27. Rodriguez, E., Carman, N. J., Vander Velde, G., McReynolds, J. H., Mabry, T. J., Irwin, et al. (1972). Methoxylated flavonoids from Artemisia. Phytochemistry, 11, 3509–3514.Google Scholar
  28. Schmidt, A., Li, C., Jones, A. D., & Pichersky, E. (2012). Characterization of a flavonol 3-O-methyltransferase in the trichomes of the wild tomato species Solanum habrochaites. Planta. doi:10.1007/s00425-012-1676-0.PubMedGoogle Scholar
  29. Schmidt, A., Li, C., Shi, F., Jones, A. D., & Pichersky, E. (2011). Polymethylated myricetin in trichomes of the wild tomato species Solanum habrochaites and characterization of trichome-specific 3′/5′- and 7/4′-myricetin O-methyltransferases. Plant Physiology, 155, 1999–2009.PubMedCrossRefGoogle Scholar
  30. Stefova, M., Stafilov, T., Kulevanova, S., Stefkov, G., & Bankova, V. S. (2007). QSRR of flavones: Evaluation of substituent contributions to RP HPLC retention. Journal of Liquid Chromatography & Related Technologies, 30, 1035–1049.CrossRefGoogle Scholar
  31. Stevens, J. F., Wollenweber, E., Ivancic, M., Hsu, V. L., Sundberg, S., & Deinzer, M. L. (1999). Leaf surface flavonoids of Chrysothamnus. Phytochemistry, 51, 771–780.CrossRefGoogle Scholar
  32. Stobiecki, M. (2000). Application of mass spectrometry for identification and structural studies of flavonoid glycosides. Phytochemistry, 54, 237–256.PubMedCrossRefGoogle Scholar
  33. Tahara, S. (2007). A journey of twenty-five years through the ecological biochemistry of flavonoids. Bioscience, Biotechnology, and Biochemistry, 71, 1387–1404.PubMedCrossRefGoogle Scholar
  34. Trouillas, P., Marsal, P., Siri, D., Lazzaroni, R., & Duroux, J. L. (2006). A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: The specificity of the 3-OH site. Food Chemistry, 97, 679–688.CrossRefGoogle Scholar
  35. van der Hooft, J. J. J., Vervoort, J., Bino, R. J., Beekwilder, J., & de Vos, R. C. H. (2011). Polyphenol identification based on systematic and robust high-resolution accurate mass spectrometry fragmentation. Analytical Chemistry, 83, 409–416.PubMedCrossRefGoogle Scholar
  36. Vogt, T., & Jones, P. (2000). Glycosyltransferases in plant natural product synthesis: Characterization of a supergene family. Trends in Plant Science, 5, 380–386.PubMedCrossRefGoogle Scholar
  37. Walle, T., Nga, T., Kawamori, T., Wen, X., Tsuji, P. A., & Walle, U. K. (2007). Cancer chemopreventive properties of orally bioavailable flavonoids—Methylated versus unmethylated flavones. Biochemical Pharmacology, 73, 1288–1296.PubMedCrossRefGoogle Scholar
  38. Wen, X., & Walle, T. (2006). Methylated flavonoids have greatly improved intestinal absorption and metabolic stability. Drug Metabolism and Disposition, 34, 1786–1792.PubMedCrossRefGoogle Scholar
  39. Ylstra, B., Touraev, A., Moreno, R. M. B., Stoger, E., Vantunen, A. J., Vicente, O., et al. (1992). Flavonols stimulate development, germination, and tube growth of tobacco pollen. Plant Physiology, 100, 902–907.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Chao Li
    • 1
  • Adam Schmidt
    • 2
  • Eran Pichersky
    • 2
  • Feng Shi
    • 1
  • A. Daniel Jones
    • 1
    • 3
    • 4
  1. 1.Department of ChemistryMichigan State UniversityEast LansingUSA
  2. 2.Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUSA
  3. 3.Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUSA
  4. 4.Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUSA

Personalised recommendations