, Volume 9, Issue 2, pp 337–348 | Cite as

The influence of citrate, EDTA, and heparin anticoagulants to human plasma LC–MS lipidomic profiling

  • Vanessa Gonzalez-Covarrubias
  • Adrie Dane
  • Thomas Hankemeier
  • Rob J. Vreeken
Original Article


Lipid profiling of human plasma by liquid chromatography-electrospray ionization coupled to mass spectrometry (LC–ESI-MS) is being used to identify biomarkers of health, disease, and treatment efficacy. However, there is no consensus on the choice of anticoagulant to perform and compare lipidomic measurements. This study assessed the effect of the anticoagulants citrate, EDTA, and heparin, on eight synthetic and 80 plasma lipids, and compared lipidomic data among anticoagulants. Lipid extraction was affected distinctively by the anticoagulant of choice likely due to the different physico-chemical properties among anticoagulants. Peak areas of seventy endogenous lipids showed significant differences between citrate–heparin and EDTA–heparin comparisons similar to those observed for synthetic lipids. Only ten endogenous lipid species showed comparable peak areas among the three anticoagulants. Correction by a structurally related internal standard only partly eliminated differences among anticoagulants (ANOVA, P value <0.001). However, comparisons among anticoagulants were possible for most endogenous lipids after correction of peak areas by the sum of areas of its lipid class. Our observations indicate that the choice of anticoagulant distinctively impact the peak response of most lipid species by LC–ESI-MS. Lipidomic data from plasma obtained with different anticoagulants should address differences in matrix effects and extraction procedures since ion strength, plasma pH, and different physicochemical properties among anticoagulants influence lipid extraction and LC–ESI-MS analysis.


Anticoagulant EDTA Citrate Heparin Lipidomics LC–MS 



The excellent assistance of Peter Schouten from The Centre for Human Drug Research and enriching discussions with Amy Harms, Marek Noga, and Robert-Jan Raterink from the Netherlands Metabolomics Centre are gratefully acknowledged. This project was (co)financed by the Netherlands Metabolomics (NMC) which is part of the Netherlands Genomics Initiative/Netherlands Organisation for Scientific Research.

Supplementary material

11306_2012_450_MOESM1_ESM.xlsx (49 kb)
Supplementary material 1 (XLS 50 kb)


  1. Barton, R. H., Waterman, D., Bonner, F. W., Holmes, E., Clarke, R., Nicholson, J. K., et al. (2009). The influence of EDTA and citrate anticoagulant addition to human plasma on information recovery from NMR-based metabolic profiling studies. Molecular BioSystems, 6(1), 215–224. doi:10.1039/b907021d.CrossRefPubMedGoogle Scholar
  2. Bergheanu, S. C., Reijmers, T., Zwinderman, A. H., Bobeldijk, I., Ramaker, R., Liem, A.-H., et al. (2008). Lipidomic approach to evaluate rosuvastatin and atorvastatin at various dosages: Investigating differential effects among statins. Current Medical Research and Opinion, 24(9), 2477–2487. doi:1185/03007990802321709.CrossRefPubMedGoogle Scholar
  3. Bligh, E., & Dyer, W. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.CrossRefPubMedGoogle Scholar
  4. Christensen, J. M., & Stalker, D. (1991). Ibuprofen piconol hydrolysis invitro in plasma, whole-blood, and serum using different anticoagulants. Journal of Pharmaceutical Sciences, 80(1), 29–31. doi:10.1002/jps.2600800108.CrossRefPubMedGoogle Scholar
  5. Evans, M. J., Livesey, J. H., Ellis, M. J., & Yandle, T. G. (2001). Effect of anticoagulants and storage temperatures on stability of plasma and serum hormones. Clinical Biochemistry, 34(2), 107–112.CrossRefPubMedGoogle Scholar
  6. Graessler, J., Schwudke, D., Schwarz, P. E. H., Herzog, R., Shevchenko, A., & Bornstein, S. R. (2009). Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients. PLoS One, 4(7), e6261.CrossRefPubMedGoogle Scholar
  7. Gross, Richard. W., & Han, X. (2011). Lipidomics at the interface of structure and function in systems biology. Chemistry & Biology, 18(3), 284–291.CrossRefGoogle Scholar
  8. Hu, C., van Dommelen, J., van der Heijden, R., Spijksma, G., Reijmers, T. H., Wang, M., et al. (2008). RPLC-ion-trap-FTMS method for lipid profiling of plasma: Method validation and application to p53 mutant mouse model. Journal of Proteome Research, 7(11), 4982–4991. doi:10.1021/pr800373m.CrossRefPubMedGoogle Scholar
  9. Jessome, L. L., & Volmer, D. A. (2006). Ion suppression: A major concern in mass spectrometry. LCGC North America, 24, 498–510.Google Scholar
  10. Johnstone, I. B. (1993). The importance of accurate citrate to blood ratios in the collection of canine blood for hemostatic testing. Canadian Veterinary Journal (Revue Veterinaire Canadienne), 34(10), 627–629.Google Scholar
  11. Kirschner, L. B. (1958). The cation content of phospholipids from swine erythrocytes. Journal of General Physiology, 42(2), 231–241.CrossRefPubMedGoogle Scholar
  12. Mastovska, K., Lehotay, S. J., & Anastassiades, M. (2005). Combination of analyte protectants to overcome matrix effects in routine GC analysis of pesticide residues in food matrixes. Analytical Chemistry, 77(24), 8129–8137. doi:10.1021/ac0515576.CrossRefPubMedGoogle Scholar
  13. Matuszewski, B. K. (2006). Standard line slopes as a measure of a relative matrix effect in quantitative HPLC-MS bioanalysis. Journal of Chromatography B—Analytical Technologies in the Biomedical and Life Sciences, 830(2), 293–300. doi:10.1016/j.jchromb.2005.11.009.CrossRefGoogle Scholar
  14. Mei, H., Hsieh, Y. S., Nardo, C., Xu, X. Y., Wang, S. Y., Ng, K., et al. (2003). Investigation of matrix effects in bioanalytical high-performance liquid chromatography/tandem mass spectrometric assays: Application to drug discovery. Rapid Communications in Mass Spectrometry, 17(1), 97–103. doi:10.1002/rcm.876.CrossRefPubMedGoogle Scholar
  15. Mori, T. A., Mas, E., Barden, A. E., Zahra, P., & Croft, K. D. (2012). Measurement of resolvins and protectins using liquid chromatography-tandem mass spectrometry: Comparison of plasma and serum levels in humans. ISSFAL Conference: Poster, Vancouver, Canada.Google Scholar
  16. Peoples, M. C., Halquist, M. S., Ismaiel, O., El-Mammli, M. Y., Shalaby, A., & Karnes, H. T. (2008). Assessment of matrix effects and determination of niacin in human plasma using liquid–liquid extraction and liquid chromatography-tandem mass spectrometry. Biomedical Chromatography, 22(11), 1272–1278. doi:10.1002/bmc.1057.CrossRefPubMedGoogle Scholar
  17. Quehenberger, O., & Dennis, E. A. (2011). The human plasma lipidome. New England Journal of Medicine, 365(19), 1812–1823. doi:10.1056/NEJMra1104901.CrossRefPubMedGoogle Scholar
  18. Stein, P. E., & Goodier, D. W. (1986). Effect of in vitro sodium citrate anticoagulant on results of arterial blood gas analysis. Journal of Clinical Pathology, 39(9), 1046.CrossRefPubMedGoogle Scholar
  19. Szymańska, E., van Dorsten, F., Troost, J., Paliukhovich, I., van Velzen, E., Hendriks, M., et al. (2011). A lipidomic analysis approach to evaluate the response to cholesterol-lowering food intake. Metabolomics, 1–13. doi:10.1007/s11306-011-0384-2.
  20. Taylor, P. J. (2005). Matrix effects: The Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clinical Biochemistry, 38(4), 328–334. doi:10.1016/j.clinbiochem.2004.11.007.CrossRefPubMedGoogle Scholar
  21. Viswanathan, C. T., Bansal, S., Booth, B., DeStefano, A. J., Rose, M. J., Sailstad, J., et al. (2007). Quantitative bioanalytical methods validation and implementation: Best practices for chromatographic and ligand binding assays. Pharmaceutical Research, 24(10), 1962–1973. doi:10.1007/s11095-007-9291-7.CrossRefPubMedGoogle Scholar
  22. Xia, J., Psychogios, N., Young, N., & Wishart, D. S. (2009). MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37(suppl 2), W652–W660. doi:10.1093/nar/gkp356.CrossRefPubMedGoogle Scholar
  23. Yi, J., Craft, D., & Gelfand, C. A. (2011). Minimizing preanalytical variation of plasma samples by proper blood collection and handling. Methods in Molecular Biology, 728(2), 137–149. doi:10.1007/978-1-61779-068-3_8.CrossRefPubMedGoogle Scholar
  24. Yu, Z., Kastenmaller, G., He, Y., Belcredi, P., Maller, G., Prehn, C., et al. (2011). Differences between human plasma and serum metabolite profiles. PLoS One, 6(7), e21230.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Vanessa Gonzalez-Covarrubias
    • 1
    • 2
  • Adrie Dane
    • 1
    • 2
  • Thomas Hankemeier
    • 1
    • 2
  • Rob J. Vreeken
    • 1
    • 2
  1. 1.The Netherlands Metabolomics CentreLeidenThe Netherlands
  2. 2.LACDR, Analytical BiosciencesLeiden UniversityLeidenThe Netherlands

Personalised recommendations