Metabolomics

, Volume 9, Issue 1, pp 223–235 | Cite as

Urinary metabolic network analysis in trauma, hemorrhagic shock, and resuscitation

  • Elizabeth R. Lusczek
  • Daniel R. Lexcen
  • Nancy E. Witowski
  • Kristine E. Mulier
  • Greg Beilman
Original Article

Abstract

Hemorrhagic shock, often a result of traumatic injury, is a condition of reduced perfusion that results in diminished delivery of oxygen to tissues. The disruption in oxygen delivery induced by both ischemia (diminished oxygen delivery) and reperfusion (restoration of oxygen delivery) has profound consequences for cellular metabolism and the maintenance of homeostasis. The pathophysiologic state associated with traumatic injury and hemorrhagic shock was studied with a scale-invariant metabolic network. Urinary metabolic profiles were constructed from NMR spectra of urine samples collected at set timepoints in a porcine model of hemorrhagic shock that included a pulmonary contusion, a liver crush injury, and a 35 % controlled bleed. The network was constructed from these metabolic profiles. A partial least squares discriminant analysis (PLS-DA) model that discriminates by experimental timepoint was also constructed. Comparisons of the network (functional relationships among metabolites) and PLS-DA model (observable relationships to experimental time course) revealed complementary information. First, ischemia/reperfusion injury and evidence of cell death due to hemorrhage was associated with early resuscitation timepoints. Second, evidence of increased protein catabolism and traumatic injury was associated with late resuscitation timepoints. These results are concordant with generally accepted views of the metabolic progression of shock.

Keywords

Urine Metabolomics Metabolic networks NMR Hemorrhagic shock 

Notes

Acknowledgments

The authors wish to thank the Office of Naval Research for their continued funding of this research (grants N00014-09-1-0323 and N000-05-1-0344), the Minnesota Supercomputing Institute, the University of Minnesota’s Nuclear Magnetic Resonance Facility (funding provided by NSF grant BIR-961477, the University of Minnesota Medical School, and the Minnesota Medical Foundation), and the University of Minnesota. The authors also wish to thank Dr. Susan Jones for her helpful feedback in the preparation of this manuscript.

Supplementary material

11306_2012_441_MOESM1_ESM.jpg (3.7 mb)
Supplementary material 1 (JPEG 3814 kb)
11306_2012_441_MOESM2_ESM.jpg (5.9 mb)
Supplementary material 2 (JPEG 6072 kb)
11306_2012_441_MOESM3_ESM.jpg (5.6 mb)
Supplementary material 3 (JPEG 5703 kb)
11306_2012_441_MOESM4_ESM.jpg (4.2 mb)
Supplementary material 4 (JPEG 4270 kb)
11306_2012_441_MOESM5_ESM.jpg (4 mb)
Supplementary material 5 (JPEG 4133 kb)

References

  1. Angele, M. K., Schneider, C. P., & Chaudry, I. H. (2008). Bench-to-bedside review: Latest results in hemorrhagic shock. Critical Care, 12, 218.PubMedCrossRefGoogle Scholar
  2. Aon, M. A., Cortassa, S., & O’Rourke, B. (2007). On the network properties of mitochondria. In V. Saks (Ed.), Molecular system bioenergetics: Energy for life (pp. 111–135). Weinheim: Wiley-VCH.CrossRefGoogle Scholar
  3. Barabási, A. L., & Oltvai, Z. N. (2004). Network biology: Understanding the cell’s functional organization. Nature Reviews Genetics, 5, 101–113.PubMedCrossRefGoogle Scholar
  4. Cohen, M. J., Serkova, N. J., Wiener-Kronish, J., Pittet, J. F., & Niemann, C. U. (2010). 1H-NMR-based metabolic signatures of clinical outcomes in trauma patients-beyond lactate and base deficit. J Trauma, 69, 31–40.PubMedCrossRefGoogle Scholar
  5. Cuthbertson, D. (1942). Post-shock metabolic response. The Lancet, 239, 433–437.CrossRefGoogle Scholar
  6. Eastridge, B, & Cohn, S. (2011). Military and civilian joint research gaps. Resource document. National Institute of Trauma. http://www.nationaltraumainstitute.org/news_and_information/white_papers_and_presentations.html. Accessed 1 November 2011.
  7. Fiehn, O. (2002). Metabolomics—the link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171.PubMedCrossRefGoogle Scholar
  8. Fink, M. P. (2002). Bench-to-bedside review: Cytopathic hypoxia. Critical Care, 6, 491–499.PubMedCrossRefGoogle Scholar
  9. Hill, A., & Hill, G. (1998). Metabolic response to severe injury. British Journal of Surgery, 85, 884–890.PubMedCrossRefGoogle Scholar
  10. Holcomb, J. B., Pusateri, A. E., Harris, R. A., et al. (1999). Effect of dry fibrin sealant dressings versus gauze packing on blood loss in grade V liver injuries in resuscitated swine. J Trauma, 46, 49.PubMedCrossRefGoogle Scholar
  11. Holcomb, J. B., Stansbury, L. G., Champion, H. R., Wade, C., & Bellamy, R. F. (2006). Understanding combat casualty care statistics. J Trauma, 60, 397.PubMedCrossRefGoogle Scholar
  12. Hu, Z., Mellor, J., Wu, J., & DeLisi, C. (2004). VisANT: An online visualization and analysis tool for biological interaction data. BMC Bioinformatics, 5, 17.PubMedCrossRefGoogle Scholar
  13. Jeevanandam, M., Young, D. H., Ramias, L., & Schiller, W. R. (1989). Aminoaciduria of severe trauma. American Journal of Clinical Nutrition, 49, 814.PubMedGoogle Scholar
  14. Kinross, J. M., Alkhamesi, N., Barton, R. H., et al. (2011). Global metabolic phenotyping in an experimental laparotomy model of surgical trauma. Journal of Proteome Research, 10(1), 277–287.PubMedCrossRefGoogle Scholar
  15. Klein, J. (2000). Membrane breakdown in acute and chronic neurodegeneration: Focus on choline-containing phospholipids. Journal of Neural Transmission, 107, 1027–1063.PubMedCrossRefGoogle Scholar
  16. Langfelder, P., & Horvath, S. (2008). WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 9, 559.PubMedCrossRefGoogle Scholar
  17. Langfelder, P., Zhang, B., & Horvath, S. (2008). Defining clusters from a hierarchical cluster tree: The dynamic tree cut package for R. Bioinformatics, 24, 719.PubMedCrossRefGoogle Scholar
  18. Lee, J., Lee, H., & Sadler, P. (1991). Uraemia: Is urea more important than we think? The Lancet, 338, 1438–1440.CrossRefGoogle Scholar
  19. Lipton, P. (1999). Ischemic cell death in brain neurons. Physiological Reviews, 79, 1431–1568.PubMedGoogle Scholar
  20. Lusczek, E. R., Nelson, T., Lexcen, D., Witowski, N. E., Mulier, K. E., & Beilman, G. (2011). Urine metabolomics in hemorrhagic shock: Normalization of urine in the face of changing intravascular fluid volume and perturbations in metabolism. Journal of Bioanalysis & Biomedicine, 3, 038–048.Google Scholar
  21. Mortishire-Smith, R. J., Skiles, G. L., Lawrence, J. W., et al. (2004). Use of metabonomics to identify impaired fatty acid metabolism as the mechanism of a drug-induced toxicity. Chemical Research in Toxicology, 17, 165–173.PubMedCrossRefGoogle Scholar
  22. Mulier, K. E., Greenberg, J. G., & Beilman, G. J. (2011). Hypercoagulability in porcine hemorrhagic shock is present early after trauma and resuscitation. J Surg Res, 174, e31–e35.PubMedCrossRefGoogle Scholar
  23. Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29, 1181–1189.PubMedCrossRefGoogle Scholar
  24. Peitzman, A. B., Harbrecht, B. G., Udekwu, A. O., Billiar, T. R., Kelly, E., & Simmons, R. L. (1995). Hemorrhagic shock. Current Problems in Surgery, 32, 925–1002.PubMedCrossRefGoogle Scholar
  25. R Team. (2010). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
  26. Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., & Barabási, A. L. (2002). Hierarchical organization of modularity in metabolic networks. Science, 297, 1551.PubMedCrossRefGoogle Scholar
  27. Sack, M. (2006). Mitochondrial depolarization and the role of uncoupling proteins in ischemia tolerance. Cardiovascular Research, 72, 210–219.PubMedCrossRefGoogle Scholar
  28. Simenhoff, M. L., Saukkonen, J. J., Burke, J. F., et al. (1978). Importance of aliphatic amines in uremia. Kidney International. Supplement, 8, S16–S19.PubMedGoogle Scholar
  29. Somero, G. N. (1986). From dogfish to dogs: Trimethylamines protect proteins from urea. Physiology, 1, 9–12.Google Scholar
  30. Threlfall, C. J., Maxwell, A. R., & Stoner, H. B. (1984). Post-traumatic creatinuria. J Trauma, 24, 516.PubMedCrossRefGoogle Scholar
  31. Vaidya, V. S., Ferguson, M. A., & Bonventre, J. V. (2008). Biomarkers of acute kidney injury. Annual Review of Pharmacology and Toxicology, 48, 463.PubMedCrossRefGoogle Scholar
  32. Weljie, A. M., Newton, J., Mercier, P., Carlson, E., & Slupsky, C. M. (2006). Targeted profiling: Quantitative analysis of 1H NMR metabolomics data. Analytical Chemistry, 78, 4430–4442.PubMedCrossRefGoogle Scholar
  33. West, G. B., Woodruff, W. H., & Brown, J. H. (2002). Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proceedings of the National Academy of Sciences, 99, 2473.CrossRefGoogle Scholar
  34. Wishart, D. S. (2006). Metabolomics in monitoring kidney transplants. Current Opinion in Nephrology and Hypertension, 15, 637.PubMedCrossRefGoogle Scholar
  35. Wold, S., Sjostrom, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130.CrossRefGoogle Scholar
  36. Xiao, W., Mindrinos, M. N., Seok, J., et al. (2011). A genomic storm in critically injured humans. J. Exp. Med., 208, 2581–2590.PubMedCrossRefGoogle Scholar
  37. Zhao, W., Langfelder, P., Fuller, T., Dong, J., Li, A., & Hovarth, S. (2010). Weighted gene coexpression network analysis: State of the art. Journal of Biopharmaceutical Statistics, 20, 281–300.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Elizabeth R. Lusczek
    • 1
  • Daniel R. Lexcen
    • 1
  • Nancy E. Witowski
    • 1
  • Kristine E. Mulier
    • 1
  • Greg Beilman
    • 1
  1. 1.Division of Critical Care and Acute Care Surgery, Department of SurgeryUniversity of MinnesotaMinneapolisUSA

Personalised recommendations