Metabolomics

, Volume 9, Issue 1, pp 33–43 | Cite as

Assigning precursor–product ion relationships in indiscriminant MS/MS data from non-targeted metabolite profiling studies

  • Corey D. Broeckling
  • Adam L. Heuberger
  • Jonathan A. Prince
  • E. Ingelsson
  • Jessica E. Prenni
Original Article

Abstract

Tandem mass spectrometry using precursor ion selection (MS/MS) is an invaluable tool for structural elucidation of small molecules. In non-targeted metabolite profiling studies, instrument duty cycle limitations and experimental costs have driven efforts towards alternate approaches. Recently, researchers have begun to explore methods for collecting indiscriminant MS/MS (idMS/MS) data in which the fragmentation process does not involve precursor ion isolation. While this approach has many advantages, importantly speed, sensitivity and coverage, confident assignment of precursor–product ion relationships is challenging, which has inhibited broad adoption of the technique. Here, we present an approach that uses open source software to improve the assignment of precursor–product relationships in idMS/MS data by appending a dataset-wide correlational analysis to existing tools. The utility of the approach was demonstrated using a dataset of standard compounds spiked into a malt-barley background, as well as unspiked human serum. The workflow was able to recreate idMS/MS spectra which are highly similar to standard MS/MS spectra of authentic standards, even in the presence of a complex matrix background. The application of this approach has the potential to generate high quality idMS/MS spectra for each detectable molecular feature, which will streamline the identification process for non-targeted metabolite profiling studies.

Keywords

Metabolomics Tandem mass spectrometry MS/MS MSe idMS/MS 

Supplementary material

11306_2012_426_MOESM1_ESM.docx (363 kb)
Supplementary material 1 (DOCX 372 kb)

References

  1. Bern, M., Finney, G., Hoopmann, M. R., Merrihew, G., Toth, M. J., & MacCoss, M. J. (2010). Deconvolution of mixture spectra from ion-trap data-independent-acquisition tandem mass spectrometry. Analytical Chemistry, 82, 833–841. doi:10.1021/Ac901801b.PubMedCrossRefGoogle Scholar
  2. Hakansson, K., Zubarev, R., & Hakansson, P. (1998). Combination of nozzle-skimmer fragmentation and partial acid hydrolysis in electrospray ionization time-of-flight mass spectrometry of synthetic peptides. Rapid Communications in Mass Spectrometry, 12, 705–711.PubMedCrossRefGoogle Scholar
  3. Hoopmann, M. R., Finney, G. L., & MacCoss, M. J. (2007). High-speed data reduction, feature detection and MS/MS spectrum quality assessment of shotgun proteomics data sets using high-resolution mass spectrometry. Analytical Chemistry, 79, 5620–5632. doi:10.1021/Ac0700833.PubMedCrossRefGoogle Scholar
  4. Horai, H., et al. (2010). MassBank: A public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry, 45, 703–714. doi:10.1002/Jms.1777.PubMedCrossRefGoogle Scholar
  5. Ipsen, A., Want, E. J., Lindon, J. C., & Ebbels, T. M. D. (2010). A statistically rigorous test for the identification of parent-fragment pairs in LC–MS datasets. Analytical Chemistry, 82, 1766–1778. doi:10.1021/Ac902361f.PubMedCrossRefGoogle Scholar
  6. Li, L. J., et al. (2001). High-throughput peptide identification from protein digests using data-dependent multiplexed tandem FTICR mass spectrometry coupled with capillary liquid chromatography. Analytical Chemistry, 73, 3312–3322.PubMedCrossRefGoogle Scholar
  7. Loo, J. A., Udseth, H. R., & Smith, R. D. (1989). Peptide and protein-analysis by electrospray ionization mass-spectrometry and capillary electrophoresis mass-spectrometry. Analytical Biochemistry, 179, 404–412.PubMedCrossRefGoogle Scholar
  8. Loo, J. A., Edmonds, C. G., Udseth, H. R., & Smith, R. D. (1990). Collisional activation and dissociation of large multiply charged proteins produced by electrospray ionization. Analytica Chimica Acta, 241, 167–173.CrossRefGoogle Scholar
  9. Nesvizhskii, A. I., Vitek, O., & Aebersold, R. (2007). Analysis and validation of proteomic data generated by tandem mass spectrometry. Nature Methods, 4, 787–797. doi:10.1038/Nmeth1088.PubMedCrossRefGoogle Scholar
  10. Plumb, R. S., et al. (2006). UPLC/MSE; a new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Communications in Mass Spectrometry, 20, 1989–1994. doi:10.1002/Rcm.2550.PubMedCrossRefGoogle Scholar
  11. Purvine, S., Eppel, J. T., Yi, E. C., & Goodlett, D. R. (2003). Shotgun collision-induced dissociation of peptides using a time of flight mass analyzer. Proteomics, 3, 847–850. doi:10.1002/pmic.200300362.PubMedCrossRefGoogle Scholar
  12. R Development Core Team. (2011). R: A language and environment for statistical computing.Google Scholar
  13. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787. doi:10.1021/Ac051437y.PubMedCrossRefGoogle Scholar
  14. Tautenhahn, R., Böttcher, C., & Neumann, S. (2007). Annotation of LC/ESI–MS mass signals. Bioinformatics Research and Development. In S. Hochreiter & R. Wagner (Eds.), Lecture notes in computer science (Vol. 4414, pp. 371–380). Berlin: Springer.Google Scholar
  15. Theodoridis, G., Gika, H. G., & Wilson, I. D. (2011). Mass spectrometry-based holistic analytical approaches for metabolite profiling in systems biology studies. Mass Spectrometry Reviews, 30, 884–906. doi:10.1002/Mas.20306.Google Scholar
  16. Wishart, D. S. (2011). Advances in metabolite identification. Bioanalysis, 3, 1769–1782. doi:10.4155/Bio.11.155.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Corey D. Broeckling
    • 1
  • Adam L. Heuberger
    • 1
  • Jonathan A. Prince
    • 2
  • E. Ingelsson
    • 2
  • Jessica E. Prenni
    • 1
  1. 1.Proteomics and Metabolomics FacilityColorado State UniversityFort CollinsUSA
  2. 2.Department of Medical Epidemiology and BiostatisticsKarolinska InstituteStockholmSweden

Personalised recommendations