, Volume 8, Issue 6, pp 1204–1217 | Cite as

Metabolome analysis during the morphological transition of Candida albicans

  • Ting-li Han
  • Richard D. Cannon
  • Silas G. Villas-Bôas
Original Article


Candida albicans is an opportunistic pathogen of humans with significant mortality in severely immunocompromised patients. The ability to switch from yeast to hyphal morphology and vice versa, in response to various environmental cues, is believed to be a critical virulence factor of this fungus. However, the mechanisms that recognize such environmental signals and trigger the morphological change at a system level are still not clearly understood. Therefore, we have compared the metabolite profiles of C. albicans cells growing under different hyphae-inducing conditions to the metabolite profiles of growing yeast cells. Surprisingly our results suggest an overall downregulation of cellular metabolism during the yeast to hyphal morphological transition. Among the metabolic pathways involved in the central carbon metabolism, we have found seventeen that were significantly downregulated in all three hyphae-inducing conditions. This indicates that these central carbon metabolic pathways are likely to be intrinsically involved in the downstream effects of the morphogenetic process.


Candida albicans Metabolite profiling Central carbon metabolism Metabolomics Filamentous growth Morphogenesis 



We thank D. Wagachchi for assisting with sample preparation; and R. Aggio and L. Fearnley for data analysis assistance. This work was supported by Faculty of Science Research Funding, University of Auckland and by the University of Auckland Doctoral Scholarship for Ting-Li Han.


  1. Aggio, R. B. M., Ruggiero, K., & Villas-Bôas, S. G. (2010). Pathway activity profiling (papi): From the metabolite profile to the metabolic pathway activity. Bioinformatics, 26, 2969–2976.PubMedCrossRefGoogle Scholar
  2. Aoki, S., & Ito-kuwa, S. (1982). Respiration of Candida albicans in relation to its morphogenesis. Plant and Cell Physiology, 23, 721–726.Google Scholar
  3. Arai, T., Mikami, Y., & Yokoyama, K. (1977). Phagocytosis of Candida albicans by rabbit alveolar macrophages and guinea pig neutrophils. Sabouraudia Journal of Medical and Veterinary Mycology, 15, 171–177.CrossRefGoogle Scholar
  4. Banerjee, M., Thompson, D. S., Lazzell, A., Carlisle, P. L., Pierce, C., Monteagudo, C., et al. (2008). UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Molecular Biology of the Cell, 19, 1354–1365.PubMedCrossRefGoogle Scholar
  5. Bendel, C. M., Hess, D. J., Garni, R. M., Henry-Stanley, M., & Wells, C. L. (2003). Comparative virulence of Candida albicans yeast and filamentous forms in orally and intravenously inoculated mice. Critical Care Medicine, 31, 501–507.PubMedCrossRefGoogle Scholar
  6. Bensen, E. S., Martin, S. J., Li, M., Berman, J., & Davis, D. A. (2004). Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Molecular Microbiology, 54, 1335–1351.PubMedCrossRefGoogle Scholar
  7. Braun, B. R., & Johnson, A. D. (1997). Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science, 277, 105–109.PubMedCrossRefGoogle Scholar
  8. Brown, D. H., Jr, Giusani, A. D., Chen, X., & Kumamoto, C. A. (1999). Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Molecular Microbiology, 34, 651–662.PubMedCrossRefGoogle Scholar
  9. Carman, A. J., Vylkova, S., & Lorenz, M. C. (2008). Role of acetyl coenzyme a synthesis and breakdown in alternative carbon source utilization in Candida albicans. Eukaryotic Cell, 7, 1733–1741.PubMedCrossRefGoogle Scholar
  10. Chen, H., Fujita, M., Feng, Q., Clardy, J., & Fink, G. R. (2004). Tyrosol is a quorum-sensing molecule in Candida albicans. Proceedings of the National academy of Sciences of the United States of America, 101, 5048–5052.PubMedCrossRefGoogle Scholar
  11. Cheng, G., Yeater, K. M., & Hoyer, L. L. (2006). Cellular and molecular biology of Candida albicans estrogen response. Eukaryotic Cell, 5, 180–191.PubMedCrossRefGoogle Scholar
  12. Doedt, T., Krishnamurthy, S., Bockmühl, D. P., Tebarth, B., Stempel, C., Russell, C. L., et al. (2004). APSES proteins regulate morphogenesis and metabolism in Candida albicans. Molecular Biology of the Cell, 15, 3167–3180.PubMedCrossRefGoogle Scholar
  13. Eisman, B., Alonso-Monge, R., Román, E., Arana, D., Nombela, C., & Pla, J. (2006). The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen Candida albicans. Eukaryotic Cell, 5, 347–358.PubMedCrossRefGoogle Scholar
  14. Enjalbert, B., Smith, D. A., Cornell, M. J., Alam, I., Nicholls, S., Brown, A. J. P., et al. (2006). Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Molecular Biology of the Cell, 17, 1018–1032.PubMedCrossRefGoogle Scholar
  15. Feng, Q., Summers, E., Guo, B., & Fink, G. (1999). Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. Journal of Bacteriology, 181, 6339–6346.PubMedGoogle Scholar
  16. Fernández-Arenas, E., Cabezón, V., Bermejo, C., Arroyo, J., Nombela, C., Diez-Orejas, R., et al. (2007). Integrated proteomics and genomics strategies bring new insight into Candida albicans response upon macrophage interaction. Molecular and Cellular Proteomics, 6, 460–478.PubMedCrossRefGoogle Scholar
  17. Fradin, C., De Groot, P., MacCallum, D., Schaller, M., Klis, F., Odds, F. C., et al. (2005). Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Molecular Microbiology, 56, 397–415.PubMedCrossRefGoogle Scholar
  18. García-Sánchez, S., Aubert, S., Iraqui, I., Janbon, G., Ghigo, J. M., & D’Enfert, C. (2004). Candida albicans biofilms: A developmental state associated with specific and stable gene expression patterns. Eukaryotic Cell, 3, 536–545.PubMedCrossRefGoogle Scholar
  19. García-Sánchez, S., Mavor, A. L., Russell, C. L., Argimon, S., Dennison, P., Enjalbert, B., et al. (2005). Global roles of Ssn6 in tup1- And nrg1-dependent gene regulation in the fungal pathogen, Candida albicans. Molecular Biology of the Cell, 16, 2913–2925.PubMedCrossRefGoogle Scholar
  20. Ghosh, S., Navarathna, D. H. M. L. P., Roberts, D. D., Cooper, J. T., Atkin, A. L., Petro, T. M., et al. (2009). Arginine-induced germ tube formation in Candida albicans is essential for escape from murine macrophage line RAW 264.7. Infection and Immunity, 77, 1596–1605.PubMedCrossRefGoogle Scholar
  21. Gillum, A. M., Tsay, E. Y. H., & Kirsch, D. R. (1984). Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Molecular and General Genetics, 198, 179–182.PubMedCrossRefGoogle Scholar
  22. Han, T. L., Cannon, R. D., & Villas-Bôas, S. G. (2011). The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genetics and Biology, 48(8), 747–763.PubMedCrossRefGoogle Scholar
  23. Hogan, D. A., Vik, A., & Kolter, R. (2004). A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Molecular Microbiology, 54, 1212–1223.PubMedCrossRefGoogle Scholar
  24. Holmes, A. R., & Shepherd, M. G. (1987). Proline-induced germ-tube formation in Candida albicans: Role of proline uptake and nitrogen metabolism. Journal of General Microbiology, 133, 3219–3228.PubMedGoogle Scholar
  25. Holmes, A. R., & Shepherd, M. G. (1988). Nutritional factors determine germ tube formation in Candida albicans. Journal of Medical and Veterinary Mycology, 26, 127–131.PubMedCrossRefGoogle Scholar
  26. Hornby, J. M., Jensen, E. C., Lisec, A. D., Tasto, J. J., Jahnke, B., Shoemaker, R., et al. (2001). Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Applied and Environmental Microbiology, 67, 2982–2992.PubMedCrossRefGoogle Scholar
  27. Hwang, C. S., Oh, J. H., Huh, W. K., Yim, H. S., & Kang, S. O. (2003). Ssn6, an important factor of morphological conversion and virulence in Candida albicans. Molecular Microbiology, 47, 1029–1043.PubMedCrossRefGoogle Scholar
  28. José, C. S., Monge, R. A., Pérez-Díaz, R., Pla, J., & Nombela, C. (1996). The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans. Journal of Bacteriology, 178, 5850–5852.Google Scholar
  29. Kadosh, D., & Johnson, A. D. (2001). Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Molecular and Cellular Biology, 21, 2496–2505.PubMedCrossRefGoogle Scholar
  30. Kell, D. B., Brown, M., Davey, H. M., Dunn, W. B., Spasic, I., & Oliver, S. G. (2005). Metabolic footprinting and systems biology: The medium is the message. Nature Reviews Microbiology, 3, 557–565.PubMedCrossRefGoogle Scholar
  31. Kresnowati, M. T., van Winden, W. A., Almering, M. J., ten Pierick, A., Ras, C., Knijnenburg, T. A., et al. (2006). When transcriptome meets metabolome: Fast cellular responses of yeast to sudden relief of glucose limitation. Molecular Systems Biology [electronic resource], 2, 49.Google Scholar
  32. Land, G. A., McDonald, W. C., Stjernholm, R. L., & Friedman, L. (1975). Factors affecting filamentation in Candida albicans: Changes in respiratory activity of Candida albicans during filamentation. Infection and Immunity, 12, 119–127.PubMedGoogle Scholar
  33. Lee, K. L., Buckley, H. R., & Campbell, C. C. (1975). An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia Journal of Medical and Veterinary Mycology, 13, 148–153.CrossRefGoogle Scholar
  34. Lehninger, A. L. (2005). Lehninger principles of biochemistry. New York: W.H. Freeman.Google Scholar
  35. Lingappa, B. T., Prasad, M., Lingappa, Y., Hunt, D. F., & Biemann, K. (1969). Phenethyl alcohol and tryptophol: Autoantibiotics produced by the fungus Candida albicans. Science, 163, 192–194.PubMedCrossRefGoogle Scholar
  36. Lo, H. J., Köhler, J. R., Didomenico, B., Loebenberg, D., Cacciapuoti, A., & Fink, G. R. (1997). Nonfilamentous C. albicans mutants are avirulent. Cell, 90, 939–949.PubMedCrossRefGoogle Scholar
  37. Lorenz, M. C., & Fink, G. R. (2001). The glyoxylate cycle is required for fungal virulence. Nature, 412, 83–86.PubMedCrossRefGoogle Scholar
  38. Lorenz, M. C., Bender, J. A., & Fink, G. R. (2004). Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryotic Cell, 3, 1076–1087.PubMedCrossRefGoogle Scholar
  39. Maidan, M. M., De Rop, L., Serneels, J., Exler, S., Rupp, S., Tournu, H., et al. (2005a). The G protein-coupled receptor Gpr1 and the Gα protein Gpa2 act through the cAMP-protein kinase A pathway to induce morphogenesis in Candida albicans. Molecular Biology of the Cell, 16, 1971–1986.PubMedCrossRefGoogle Scholar
  40. Maidan, M. M., Thevelein, J. M., & Van Dijck, P. (2005b). Carbon source induced yeast-to-hypha transition in Candida albicans is dependent on the presence of amino acids and on the G-protein-coupled receptor Gpr1. Biochemical Society Transactions, 33, 291–293.PubMedCrossRefGoogle Scholar
  41. Monteoliva, L., Martinez-Lopez, R., Pitarch, A., Hernaez, M. L., Serna, A., Nombela, C., et al. (2011). Quantitative proteome and acidic subproteome profiling of Candida albicans yeast-to-hypha transition. Journal of Proteome Research, 10, 502–517.PubMedCrossRefGoogle Scholar
  42. Montserrat, M.-G., Perumal, P., Mekala, S., Nombela, C., Chaffin, W. L., & Gil, C. (2009). Proteomic analysis of cytoplasmic and surface proteins from yeast cells, hyphae, and biofilms of Candida albicans. Proteomics, 9, 2230–2252.CrossRefGoogle Scholar
  43. Murad, A. M. A., D’Enfert, C., Gaillardin, C., Tournu, H., Tekaia, F., Talibi, D., et al. (2001). Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1 and CaNrg1. Molecular Microbiology, 42, 981–993.PubMedCrossRefGoogle Scholar
  44. Nickerson, K. W., Atkin, A. L., & Hornby, J. M. (2006). Quorum sensing in dimorphic fungi: Farnesol and beyond. Applied and Environmental Microbiology, 72, 3805–3813.PubMedCrossRefGoogle Scholar
  45. Oh, K. B., Miyazawa, H., Naito, T., & Matsuoka, H. (2001). Purification and characterization of an autoregulatory substance capable of regulating the morphological transition in Candida albicans. Proceedings of the National academy of Sciences of the United States of America, 98, 4664–4668.PubMedCrossRefGoogle Scholar
  46. Pedreño, Y., Maicas, S., Argüelles, J. C., Sentandreu, R., & Valentin, E. (2004). The ATC1 gene encodes a cell wall-linked acid trehalase required for growth on trehalose in Candida albicans. Journal of Biological Chemistry, 279, 40852–40860.PubMedCrossRefGoogle Scholar
  47. Prigneau, O., Porta, A., & Maresca, B. (2004). Candida albicans CTN gene family is induced during macrophage infection: Homology, disruption and phenotypic analysis of CTN3 gene. Fungal Genetics and Biology, 41, 783–793.PubMedCrossRefGoogle Scholar
  48. Raamsdonk, L. M., Teusink, B., Broadhurst, D., Zhang, N., Hayes, A., Walsh, M. C., et al. (2001). A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnology, 19, 45–50.PubMedCrossRefGoogle Scholar
  49. Reynolds, R., & Braude, A. I. (1956). The filament inducing property of blood for Candida albicans; its nature and significance. Clinical Research Procedure, 4, 40.Google Scholar
  50. Romani, L., Bistoni, F., & Puccetti, P. (2003). Adaptation of Candida albicans to the host environment: The role of morphogenesis in virulence and survival in mammalian hosts. Current Opinion in Microbiology, 6, 338–343.PubMedCrossRefGoogle Scholar
  51. Rooney, P. J., & Klein, B. S. (2002). Linking fungal morphogenesis with virulence. Cellular Microbiology, 4, 127–137.PubMedCrossRefGoogle Scholar
  52. Rubin-Bejerano, I., Fraser, I., Grisafi, P., & Fink, G. R. (2003). Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proceedings of the National academy of Sciences of the United States of America, 100, 11007–11012.PubMedCrossRefGoogle Scholar
  53. Saville, S. P., Lazzell, A. L., Monteagudo, C., & Lopez-Ribot, J. L. (2003). Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryotic Cell, 2, 1053–1060.PubMedCrossRefGoogle Scholar
  54. Schweizer, A., Rupp, S., Taylor, B. N., Röllinghoff, M., & Schröppel, K. (2000). The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Molecular Microbiology, 38, 435–445.PubMedCrossRefGoogle Scholar
  55. Singh, V., Satheesh, S. V., Raghavendra, M. L., & Sadhale, P. P. (2007). The key enzyme in galactose metabolism, UDP-galactose-4-epimerase, affects cell-wall integrity and morphology in Candida albicans even in the absence of galactose. Fungal Genetics and Biology, 44, 563–574.PubMedCrossRefGoogle Scholar
  56. Smart, K. F., Aggio, R. B. M., Van Houtte, J. R., & Villas-Bôas, S. G. (2010). Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography-mass spectrometry. Nature Protocols, 5, 1709–1729.PubMedCrossRefGoogle Scholar
  57. Stichternoth, C., Fraund, A., Setiadi, E., Giasson, L., Vecchiarelli, A., & Ernst, J. F. (2011). Sch9 kinase integrates hypoxia and CO2 sensing to suppress hyphal morphogenesis in Candida albicans. Eukaryotic Cell, 10, 502–511.PubMedCrossRefGoogle Scholar
  58. Stoldt, V. R., Sonneborn, A., Leuker, C. E., & Ernst, J. F. (1997). Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO Journal, 16, 1982–1991.PubMedCrossRefGoogle Scholar
  59. Strijbis, K., Van Roermund, C. W. T., Visser, W. F., Mol, E. C., Van Den Burg, J., MacCallum, D. M., et al. (2008). Carnitine-dependent transport of acetyl coenzyme A in Candida albicans is essential for growth on nonfermentable carbon sources and contributes to biofilm formation. Eukaryotic Cell, 7, 610–618.PubMedCrossRefGoogle Scholar
  60. Tournu, H., Tripathi, G., Bertram, G., Macaskill, S., Mavor, A., Walker, L., et al. (2005). Global role of the protein kinase Gcn2 in the human pathogen Candida albicans. Eukaryotic Cell, 4, 1687–1696.PubMedCrossRefGoogle Scholar
  61. Tripathi, G., Wiltshire, C., Macaskill, S., Tournu, H., Budge, S., & Brown, A. J. P. (2002). Gcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans. EMBO Journal, 21, 5448–5456.PubMedCrossRefGoogle Scholar
  62. Verduyn, C., Postma, E., Scheffers, W. A., & Van Dijken, J. P. (1992). Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast, 8, 501–517.PubMedCrossRefGoogle Scholar
  63. Villas-Bôas, S. G., Åkesson, M., & Nielsen, J. (2005a). Biosynthesis of glyoxylate from glycine in Saccharomyces cerevisiae. FEMS Yeast Research, 5, 703–709.PubMedCrossRefGoogle Scholar
  64. Villas-Bôas, S. G., Mas, S., Åkesson, M., Smedsgaard, J., & Nielsen, J. (2005b). Mass spectrometry in metabolome analysis. Mass Spectrometry Reviews, 24, 613–646.PubMedCrossRefGoogle Scholar
  65. Villas-Bôas, S. G., Roessner, U., Hansen, M. A. E., Smedsfaard, J., & Nielsen, J. (2007). Metabolome analysis: An introduction. New Jersey: Wiley-Interscience.Google Scholar
  66. Visser, D., Van Zuylen, G. A., Van Dam, J. C., Eman, M. R., Pröll, A., Ras, C., et al. (2004). Analysis of in vivo kinetics of glycolysis in aerobic Saccharomyces cerevisiae by application of glucose and ethanol pulses. Biotechnology and Bioengineering, 88, 157–167.PubMedCrossRefGoogle Scholar
  67. Walker, G. M. (1998). Yeast physiology and biotechnology. Chichester: Wiley-Blackwell.Google Scholar
  68. Yeater, K. M., Chandra, J., Cheng, G., Mukherjee, P. K., Zhao, X., Rodriguez-Zas, S. L., et al. (2007). Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology, 153, 2373–2385.PubMedCrossRefGoogle Scholar
  69. Yin, Z., Stead, D., Selway, L., Walker, J., Riba-Garcia, I., McInerney, T., et al. (2004). Proteomic response to amino acid starvation in Candida albicans and Saccharomyces cerevisiae. Proteomics, 4, 2425–2436.PubMedCrossRefGoogle Scholar
  70. Zacchi, L. F., Gomez-Raja, J., & Davis, D. A. (2010). Mds3 regulates morphogenesis in Candida albicans through the TOR pathway. Molecular and Cellular Biology, 30, 3695–3710.PubMedCrossRefGoogle Scholar
  71. Zaragoza, O., Blazquez, M. A., & Gancedo, C. (1998). Disruption of the Candida albicans TPS1 gene encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity. Journal of Bacteriology, 180, 3809–3815.PubMedGoogle Scholar
  72. Zhou, H., & Lorenz, M. C. (2008). Carnitine acetyltransferases are required for growth on non-fermentable carbon sources but not for pathogenesis in Candida albicans. Microbiology, 154, 500–509.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ting-li Han
    • 1
  • Richard D. Cannon
    • 2
  • Silas G. Villas-Bôas
    • 1
  1. 1.Centre for Microbial Innovation, School of Biological SciencesThe University of AucklandAucklandNew Zealand
  2. 2.Department of Oral SciencesUniversity of OtagoDunedinNew Zealand

Personalised recommendations