Metabolomics

, Volume 9, Supplement 1, pp 144–158 | Cite as

Mass spectrometry based environmental metabolomics: a primer and review

Original Article

Abstract

Environmental metabolomics can be described as the study of the interactions of living organisms with their natural environments at the metabolic level. Until recently, nuclear magnetic resonance (NMR) spectroscopy has been the primary bioanalytical tool for measuring metabolite levels in this field. While NMR has some specific advantages, the higher sensitivity offered by mass spectrometry (MS) is beginning to revolutionise our ability to probe environmental metabolomes. This review provides the first comprehensive overview of the use and capabilities of MS within environmental metabolomics. Its primary aims are to introduce environmental scientists to the range of MS approaches used in metabolomics and to highlight the breadth and diversity of environmental and ecological research conducted, from ecophysiology and ecotoxicology to chemical ecology. The review is structured around MS approaches: non-targeted gas chromatography–MS, non-targeted directed infusion MS, and both non-targeted and targeted liquid chromatography–MS. Each section begins with a brief introduction to the analytical method, including some advantages and limitations in the context of metabolomics research, and then exemplifies the use of that technique in environmental metabolomics. The review concludes with a discussion on some of the challenges that remain in MS based environmental metabolomics and provides recommendations for the path ahead.

Keywords

Stress Mechanism Metabolic fingerprinting Orbitrap FT-ICR LC–MS/MS 

References

  1. Aliferis, K. A., & Chrysayi-Tokousbalides, M. (2011). Metabolomics in pesticide research and development: Review and future perspectives. Metabolomics, 7, 35–53.CrossRefGoogle Scholar
  2. Allen, A. E., Dupont, C. L., Obornik, M., Horak, A., Nunes-Nesi, A., McCrow, J. P., et al. (2011). Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature, 473, 203–207.PubMedCrossRefGoogle Scholar
  3. Allwood, J. W., Erban, A., de Koning, S., Dunn, W. B., Luedemann, A., Lommen, A., et al. (2009). Inter-laboratory reproducibility of fast gas chromatography-electron impact-time of flight mass spectrometry (GC-EI-TOF/MS) based plant metabolomics. Metabolomics, 5, 479–496.PubMedCrossRefGoogle Scholar
  4. Avery, E. L., Dunstan, R. H., & Nell, J. A. (1998). The use of lipid metabolic profiling to assess the biological impact of marine sewage pollution. Archives of Environmental Contamination and Toxicology, 35, 229–235.PubMedCrossRefGoogle Scholar
  5. Barofsky, A., Vidoudez, C., & Pohnert, G. (2009). Metabolic profiling reveals growth stage variability in diatom exudates. Limnology and Oceanography: Methods, 7, 382–390.CrossRefGoogle Scholar
  6. Booth, S. C., Workentine, M. L., Wen, J., Shaykhutdinov, R., Vogel, H. J., Ceri, H., et al. (2011). Differences in metabolism between the biofilm and planktonic response to metal stress. Journal of Proteome Research, 10, 3190–3199.PubMedCrossRefGoogle Scholar
  7. Brito-Echeverria, J., Lucio, M., Lopez-Lopez, A., Anton, J., Schmitt-Kopplin, P., & Rossello-Mora, R. (2011). Response to adverse conditions in two strains of the extremely halophilic species Salinibacter ruber. Extremophiles, 15, 379–389.PubMedCrossRefGoogle Scholar
  8. Brown, S. C., Kruppa, G., & Dasseux, J. L. (2005). Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrometry Reviews, 24, 223–231.PubMedCrossRefGoogle Scholar
  9. Brügger, B., Erben, G., Sandhoff, R., Wieland, F. T., & Lehmann, W. D. (1997). Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proceedings of the National academy of Sciences of the United States of America, 94, 2339–2344.PubMedCrossRefGoogle Scholar
  10. Bundy, J. G., Davey, M. P., & Viant, M. R. (2009). Environmental metabolomics: A critical review and future perspectives. Metabolomics, 5, 3–21.CrossRefGoogle Scholar
  11. Chen, J., Canales, L., & Neal, R. E. (2011). Multi-segment direct inject nano-ESI-LTQ-FT-ICR-MS/MS for protein identification. Proteome Science, 9, 38.PubMedCrossRefGoogle Scholar
  12. Colbourne, J. K., Pfrender, M. E., Gilbert, D., Thomas, W. K., Tucker, A., Oakley, T. H., et al. (2011). The ecoresponsive genome of Daphnia pulex. Science, 331, 555–561.PubMedCrossRefGoogle Scholar
  13. Cubbon, S., Antonio, C., Wilson, J., & Thomas-Oates, J. (2010). Metabolomic applications of HILIC-LC-MS. Mass Spectrometry Reviews, 29, 671–684.PubMedCrossRefGoogle Scholar
  14. Davey, M. P., Burrell, M. M., Woodward, F. I., & Quick, W. P. (2008). Population-specific metabolic phenotypes of Arabidopsis lyrata ssp. petraea. New Phytologist, 177, 380–388.PubMedGoogle Scholar
  15. Davey, M. P., Woodward, F. I., & Quick, W. P. (2009). Intraspecific variation in cold-temperature metabolic phenotypes of Arabidopsis lyrata ssp. petraea. Metabolomics, 5, 138–149.CrossRefGoogle Scholar
  16. Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26, 51–78.PubMedCrossRefGoogle Scholar
  17. Dodson, S. I., & Hanazato, T. (1995). Commentary on effects of anthropogenic and natural organic-chemicals on development, swimming behavior, and reproduction of Daphnia, a key member of aquatic ecosystems. Environmental Health Perspectives, 103, 7–11.PubMedGoogle Scholar
  18. Dunn, W. B., & Ellis, D. I. (2005). Metabolomics: Current analytical platforms and methodologies. Trends in Analytical Chemistry, 24, 285–294.CrossRefGoogle Scholar
  19. Dunn, W. B., Broadhurst, D. I., Atherton, H. J., Goodacre, R., & Griffin, J. L. (2011). Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chemical Society Reviews, 40, 387–426.PubMedCrossRefGoogle Scholar
  20. Dwivedi, P., Wu, P., Klopsch, S. J., Puzon, G. J., Xun, L., & Hill, H. H. (2008). Metabolic profiling by ion mobility mass spectrometry (IMMS). Metabolomics, 4, 63–80.CrossRefGoogle Scholar
  21. Epperson, L. E., Karimpour-Fard, A., Hunter, L. E., & Martin, S. L. (2011). Metabolic cycles in a circannual hibernator. Physiological Genomics, 43, 799–807.PubMedCrossRefGoogle Scholar
  22. Fiehn, O. (2008). Extending the breadth of metabolite profiling by gas chromatography coupled to mass spectrometry. Trends in Analytical Chemistry, 27, 261–269.PubMedCrossRefGoogle Scholar
  23. Flores-Valverde, A. M., & Hill, E. M. (2008). Methodology for profiling the steroid metabolome in animal tissues using ultraperformance liquid chromatography-electrospray-time-of-flight mass spectrometry. Analytical Chemistry, 80, 8771–8779.PubMedCrossRefGoogle Scholar
  24. Flores-Valverde, A. M., Horwood, J., & Hill, E. M. (2010). Disruption of the steroid metabolome in fish caused by exposure to the environmental estrogen 17 alpha-ethinylestradiol. Environmental Science and Technology, 44, 3552–3558.PubMedCrossRefGoogle Scholar
  25. Garcia-Reyero, N., & Perkins, E. J. (2011). Systems biology: Leading the revolution in ecotoxicology. Environmental Toxicology and Chemistry, 30, 265–273.PubMedCrossRefGoogle Scholar
  26. Gika, H. G., Theodoridis, G. A., & Wilson, I. D. (2008). Hydrophilic interaction and reversed-phase ultra-performance liquid chromatography TOF-MS for metabolomic analysis of Zucker rat urine. Journal of Separation Science, 31, 1598–1608.PubMedCrossRefGoogle Scholar
  27. Gohlke, R. S., & McLafferty, F. W. (1993). Early gas chromatography/mass spectrometry. Journal of the American Society of Mass Spectrometry, 4, 367–371.CrossRefGoogle Scholar
  28. Griffiths, W. J., & Wang, Y. Q. (2009). Mass spectrometry: From proteomics to metabolomics and lipidomics. Chemical Society Reviews, 38, 1882–1896.PubMedCrossRefGoogle Scholar
  29. Halket, J. M., Przyborowska, A., Stein, S. E., Mallard, W. G., Down, S., & Chalmers, R. A. (1999). Deconvolution gas chromatography mass spectrometry of urinary organic acids—potential for pattern recognition and automated identification of metabolic disorders. Rapid Communications in Mass Spectrometry, 13, 279–284.PubMedCrossRefGoogle Scholar
  30. Han, J., Danell, R. M., Patel, J. R., Gumerov, D. R., Scarlett, C. O., Speir, J. P., et al. (2008). Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry. Metabolomics, 4, 128–140.PubMedCrossRefGoogle Scholar
  31. Han, J., Datla, R., Chan, S., & Borchers, C. H. (2009). Mass spectrometry-based technologies for high-throughput metabolomics. Bioanalysis, 1, 1665–1684.PubMedCrossRefGoogle Scholar
  32. Hill, R. W., Li, C., Jones, A. D., Gunn, J. P., & Frade, P. R. (2010). Abundant betaines in reef-building corals and ecological indicators of a photoprotective role. Coral Reefs, 29, 869–880.CrossRefGoogle Scholar
  33. Hoffman, D. E., Jonsson, P., Bylesjo, M., Trygg, J., Antti, H., Eriksson, M. E., et al. (2010). Changes in diurnal patterns within the Populus transcriptome and metabolome in response to photoperiod variation. Plant, Cell and Environment, 33, 1298–1313.PubMedGoogle Scholar
  34. Holmes, E., Loo, R. L., Stamler, J., Bictash, M., Yap, I. K. S., Chan, Q., et al. (2008). Human metabolic phenotype diversity and its association with diet and blood pressure. Nature, 453, 396–400.PubMedCrossRefGoogle Scholar
  35. Hop, C., Chen, Y., & Yu, L. J. (2005). Uniformity of ionization response of structurally diverse analytes using a chip-based nanoelectrospray ionization source. Rapid Communications in Mass Spectrometry, 19, 3139–3142.PubMedCrossRefGoogle Scholar
  36. Hu, Q. Z., Noll, R. J., Li, H. Y., Makarov, A., Hardman, M., & Cooks, R. G. (2005). The Orbitrap: A new mass spectrometer. Journal of Mass Spectrometry, 40, 430–443.PubMedCrossRefGoogle Scholar
  37. Ivanišević, J., Thomas, O. P., Lejeusne, C., Chevaldonne, P., & Perez, T. (2011). Metabolic fingerprinting as an indicator of biodiversity: Towards understanding inter-specific relationships among Homoscleromorpha sponges. Metabolomics, 7, 289–304.CrossRefGoogle Scholar
  38. Jansen, J. J., Allwood, J. W., Marsden-Edwards, E., van der Putten, W. H., Goodacre, R., & van Dam, N. M. (2009). Metabolomic analysis of the interaction between plants and herbivores. Metabolomics, 5, 150–161.CrossRefGoogle Scholar
  39. Janz, D., Behnke, K., Schnitzler, J. P., Kanawati, B., Schmitt-Kopplin, P., & Polle, A. (2010). Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms. BMC Plant Biology, 10, 150.PubMedCrossRefGoogle Scholar
  40. Jones, O. A. H., Spurgeon, D. J., Svendsen, C., & Griffin, J. L. (2008). A metabolomics based approach to assessing the toxicity of the polyaromatic hydrocarbon pyrene to the earthworm Lumbricus rubellus. Chemosphere, 71, 601–609.PubMedCrossRefGoogle Scholar
  41. Junot, C., Madalinski, G., Tabet, J. C., & Ezan, E. (2010). Fourier transform mass spectrometry for metabolome analysis. Analyst, 135, 2203–2219.PubMedCrossRefGoogle Scholar
  42. Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K. F., Itoh, M., Kawashima, S., et al. (2006). From genomics to chemical genomics: New developments in KEGG. Nucleic Acids Research, 34, D354–D357.PubMedCrossRefGoogle Scholar
  43. Kawana, S., Nakagawa, K., Hasegawa, Y., Kobayashi, H., & Yamaguchi, S. (2008). Improvement of sample throughput using fast gas chromatography mass-spectrometry for biochemical diagnosis of organic acid disorders. Clinica Chimica Acta, 392, 34–40.CrossRefGoogle Scholar
  44. Khalil, M. B., Hou, W., Zhou, H., Elisma, F., Swayne, L. A., Blanchard, A. P., et al. (2010). Lipidomics era: Accomplishments and challenges. Mass Spectrometry Reviews, 29, 877–929.CrossRefGoogle Scholar
  45. Kind, T., & Fiehn, O. (2011). Advances in structure elucidation of small molecules using mass spectrometry. Bioanalytical Reviews, 2, 23–60.CrossRefGoogle Scholar
  46. Kind, T., Wohlgemuth, G., Lee, D. Y., Lu, Y., Palazoglu, M., Shahbaz, S., et al. (2009). FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Analytical Chemistry, 81, 10038–10048.PubMedCrossRefGoogle Scholar
  47. Kluender, C., Sans-Piche, F., Riedl, J., Altenburger, R., Hartig, C., Laue, G., et al. (2009). A metabolomics approach to assessing phytotoxic effects on the green alga Scenedesmus vacuolatus. Metabolomics, 5, 59–71.CrossRefGoogle Scholar
  48. Koek, M. M., Jellema, R. H., van der Greef, J., Tas, A. C., & Hankemeier, T. (2011a). Quantitative metabolomics based on gas chromatography mass spectrometry: Status and perspectives. Metabolomics, 7, 307–328.PubMedCrossRefGoogle Scholar
  49. Koek, M. M., van der Kloet, F. M., Kleemann, R., Kooistra, T., Verheij, E. R., & Hankemeier, T. (2011b). Semi-automated non-target processing in GC × GC-MS metabolomics analysis: Applicability for biomedical studies. Metabolomics, 7, 1–14.PubMedCrossRefGoogle Scholar
  50. Koulman, A., Cao, M., Faville, M., Lane, G., Mace, W., & Rasmussen, S. (2009). Semi-quantitative and structural metabolic phenotyping by direct infusion ion trap mass spectrometry and its application in genetical metabolomics. Rapid Communications in Mass Spectrometry, 23, 2253–2263.PubMedCrossRefGoogle Scholar
  51. Lai, L., Michopoulos, F., Gika, H., Theodoridis, G., Wilkinson, R. W., Odedra, R., et al. (2010). Methodological considerations in the development of HPLC-MS methods for the analysis of rodent plasma for metabolomic studies. Molecular Biosystems, 6, 108–120.PubMedCrossRefGoogle Scholar
  52. Lee, J. S., Kim, Y. S., Park, S., Kim, J., Kang, S. J., Lee, M. H., et al. (2011). Exceptional production of both prodigiosin and cycloprodigiosin as major metabolic constituents by a novel marine bacterium, Zooshikella rubidus S1-1. Applied and Environmental Microbiology, 77, 4967–4973.PubMedCrossRefGoogle Scholar
  53. Li, C., Hill, R. W., & Jones, A. D. (2010). Determination of betaine metabolites and dimethylsulfoniopropionate in coral tissues using liquid chromatography-time-of-flight mass spectrometry and stable isotope-labeled internal standards. Journal of Chromatography B, 878, 1809–1816.CrossRefGoogle Scholar
  54. Lin, C. Y., Viant, M. R., & Tjeerdema, R. S. (2006). Metabolomics: Methodologies and applications in the environmental sciences. Journal of Pesticide Science, 31, 245–251.CrossRefGoogle Scholar
  55. Macel, M., van Dam, N. M., & Keurentjes, J. J. B. (2010). Metabolomics: The chemistry between ecology and genetics. Molecular Ecology Resources, 10, 583–593.PubMedCrossRefGoogle Scholar
  56. McKelvie, J. R., Yuk, J., Xu, Y. P., Simpson, A. J., & Simpson, M. J. (2009). (1)H NMR and GC/MS metabolomics of earthworm responses to sub-lethal DDT and endosulfan exposure. Metabolomics, 5, 84–94.CrossRefGoogle Scholar
  57. Michaud, M. R., & Denlinger, D. L. (2007). Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): A metabolomic comparison. Journal of Comparative Physiology B, 177, 753–763.CrossRefGoogle Scholar
  58. Michaud, M. R., Benoit, J. B., Lopez-Martinez, G., Elnitsky, M. A., Lee, R. E., & Denlinger, D. L. (2008). Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing and desiccation in the Antarctic midge, Belgica antarctica. Journal of Insect Physiology, 54, 645–655.CrossRefGoogle Scholar
  59. Michopoulos, F., Lai, L., Gika, H., Theodoridis, G., & Wilson, I. (2009). UPLC-MS-based analysis of human plasma for metabolomics using solvent precipitation or solid phase extraction. Journal of Proteome Research, 8, 2114–2121.PubMedCrossRefGoogle Scholar
  60. Moing, A., Maucourt, M., Renaud, C., Gaudillere, M., Brouquisse, R., Lebouteiller, B., et al. (2004). Quantitative metabolic profiling by 1-dimensional H-1-NMR analyses: Application to plant genetics and functional genomics. Functional Plant Biology, 31, 889–902.CrossRefGoogle Scholar
  61. Morrison, N., Bearden, D., Bundy, J. G., Collette, T., Currie, F., Davey, M. P., et al. (2007). Standard reporting requirements for biological samples in metabolomics experiments: Environmental context. Metabolomics, 3, 203–210.CrossRefGoogle Scholar
  62. Murphy, R. C., & Gaskell, S. J. (2011). New applications of mass spectrometry in lipid analysis. Journal of Biological Chemistry, 286, 25427–25433.PubMedCrossRefGoogle Scholar
  63. Nappo, M., Berkov, S., Codina, C., Avila, C., Messina, P., Zupo, V., et al. (2009). Metabolite profiling of the benthic diatom Cocconeis scutellum by GC-MS. Journal of Applied Phycology, 21, 295–306.CrossRefGoogle Scholar
  64. Nelson, C. J., Otis, J. P., Martin, S. L., & Carey, H. V. (2009). Analysis of the hibernation cycle using LC-MS-based metabolomics in ground squirrel liver. Physiological Genomics, 37, 43–51.PubMedCrossRefGoogle Scholar
  65. Nelson, C. J., Otis, J. P., & Carey, H. V. (2010). Global analysis of circulating metabolites in hibernating ground squirrels. Comparative Biochemistry and Physiology D, 5, 265–273.Google Scholar
  66. Orsini, L., Decaestecker, E., De Meester, L., Pfrender, M. E., & Colbourne, J. K. (2011). Genomics in the ecological arena. Biology Letters, 7, 2–3.PubMedCrossRefGoogle Scholar
  67. Ossipov, V., Ossipova, S., Bykov, V., Oksanen, E., Koricheva, J., & Haukioja, E. (2008). Application of metabolomics to genotype and phenotype discrimination of birch trees grown in a long-term open-field experiment. Metabolomics, 4, 39–51.CrossRefGoogle Scholar
  68. Pasikanti, K. K., Ho, P. C., & Chan, E. C. Y. (2008). Development and validation of a gas chromatography/mass spectrometry metabolomic platform for the global profiling of urinary metabolites. Rapid Communications in Mass Spectrometry, 22, 2984–2992.PubMedCrossRefGoogle Scholar
  69. Plumb, R. S., Stumpf, C. L., Gorenstein, M. V., Castro-Perez, J. M., Dear, G. J., Anthony, M., et al. (2002). Metabolomics: The use of electrospray mass spectrometry coupled to reversed-phase liquid chromatography shows potential for the screening of rat urine in drug development. Rapid Communications in Mass Spectrometry, 16, 1991–1996.PubMedCrossRefGoogle Scholar
  70. Plumb, R. S., Johnson, K. A., Rainville, P., Shockcor, J. P., Williams, R., Granger, J. H., et al. (2006). The detection of phenotypic differences in the metabolic plasma profile of three strains of Zucker rats at 20 weeks of age using ultra-performance liquid chromatography/orthogonal acceleration time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 20, 2800–2806.PubMedCrossRefGoogle Scholar
  71. Poynton, H. C., Taylor, N. S., Hicks, J., Colson, K., Chan, S. R., Clark, C., et al. (2011). Metabolomics of microliter hemolymph samples enables an improved understanding of the combined metabolic and transcriptional responses of Daphnia magna to cadmium. Environmental Science and Technology, 45, 3710–3717.PubMedCrossRefGoogle Scholar
  72. Prince, E. K., & Pohnert, G. (2010). Searching for signals in the noise: Metabolomics in chemical ecology. Analytical and Bioanalytical Chemistry, 396, 193–197.PubMedCrossRefGoogle Scholar
  73. Ralston-Hooper, K., Hopf, A., Oh, C., Zhang, X., Adamec, J., & Sepulveda, M. S. (2008). Development of GCxGC/TOF-MS metabolomics for use in ecotoxicological studies with invertebrates. Aquatic Toxicology, 88, 48–52.PubMedCrossRefGoogle Scholar
  74. Redestig, H., Kobayashi, M., Saito, K., & Kusano, M. (2011). Exploring matrix effects and quantification performance in metabolomics experiments using artificial biological gradients. Analytical Chemistry, 83, 5645–5651.PubMedCrossRefGoogle Scholar
  75. Robert, J. A., Madilao, L. L., White, R., Yanchuk, A., King, J., & Bohlmann, J. (2010). Terpenoid metabolite profiling in Sitka spruce identifies association of dehydroabietic acid, (+)-3-carene, and terpinolene with resistance against white pine weevil. Botany-Botanique, 88, 810–820.CrossRefGoogle Scholar
  76. Roberts, L. D., McCombie, G., Titman, C. M., & Griffin, J. L. (2008). A matter of fat: An introduction to lipidomic profiling methods. Journal of Chromatography B, 871, 174–181.CrossRefGoogle Scholar
  77. Robinson, A. R., Ukrainetz, N. K., Kang, K. Y., & Mansfield, S. D. (2007). Metabolite profiling of Douglas-fir (Pseudotsuga menziesii) field trials reveals strong environmental and weak genetic variation. New Phytologist, 174, 762–773.PubMedCrossRefGoogle Scholar
  78. Rochfort, S. (2005). Metabolomics reviewed: A new “Omics” platform technology for systems biology and implications for natural products research. Journal of Natural Products, 68, 1813–1820.PubMedCrossRefGoogle Scholar
  79. Samuelsson, L. M., & Larsson, D. G. J. (2008). Contributions from metabolomics to fish research. Molecular Biosystems, 4, 974–979.PubMedCrossRefGoogle Scholar
  80. Shaw, J. R., Pfrender, M., Eads, B. D., Klaper, R., Callaghan, A., Colson, I., et al. (2007). Daphnia as an emerging model for toxicological genomics. In C. Hogstrand & P. Kille (Eds.), Advances in experimental biology on toxicogenomics (pp. 165–219). Amsterdam: Elsevier Press.Google Scholar
  81. Snape, J. R., Maund, S. J., Pickford, D. B., & Hutchinson, T. H. (2004). Ecotoxicogenomics: The challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquatic Toxicology, 67, 143–154.PubMedCrossRefGoogle Scholar
  82. Soga, T., Igarashi, K., Ito, C., Mizobuchi, K., Zimmermann, H. P., & Tomita, M. (2009). Metabolomic profiling of anionic metabolites by capillary electrophoresis mass spectrometry. Analytical Chemistry, 81, 6165–6174.PubMedCrossRefGoogle Scholar
  83. Southam, A. D., Payne, T. G., Cooper, H. J., Arvanitis, T. N., & Viant, M. R. (2007). Dynamic range and mass accuracy of wide-scan direct infusion nanoelectrospray Fourier transform ion cyclotron resonance mass spectrometry-based metabolomics increased by the spectral stitching method. Analytical Chemistry, 79, 4595–4602.PubMedCrossRefGoogle Scholar
  84. Southam, A. D., Lange, A., Hines, A., Hill, E. M., Katsu, Y., Iguchi, T., et al. (2011). Metabolomics reveals target and off-target toxicities of a model organophosphate pesticide to roach (Rutilus rutilus): Implications for biomonitoring. Environmental Science and Technology, 45, 3759–3767.PubMedCrossRefGoogle Scholar
  85. Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221.CrossRefGoogle Scholar
  86. Taylor, N. S., Weber, R. J. M., Southam, A. D., Payne, T. G., Hrydziuszko, O., Arvanitis, T. N., et al. (2009). A new approach to toxicity testing in Daphnia magna: Application of high throughput FT-ICR mass spectrometry metabolomics. Metabolomics, 5, 44–58.CrossRefGoogle Scholar
  87. Taylor, N. S., Weber, R. J. M., White, T. A., & Viant, M. R. (2010). Discriminating between different acute chemical toxicities via changes in the Daphnid metabolome. Toxicological Sciences, 118, 307–317.PubMedCrossRefGoogle Scholar
  88. Tolstikov, V. V., & Fiehn, O. (2002). Analysis of highly polar compounds of plant origin: Combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Analytical Biochemistry, 301, 298–307.PubMedCrossRefGoogle Scholar
  89. Tolstikov, V. V., Lommen, A., Nakanishi, K., Tanaka, N., & Fiehn, O. (2003). Monolithic silica-based capillary reversed-phase liquid chromatography/electrospray mass spectrometry for plant metabolomics. Analytical Chemistry, 75, 6737–6740.PubMedCrossRefGoogle Scholar
  90. Trauger, S. A., Kalisak, E., Kalisiak, J., Morita, H., Weinberg, M. V., Menon, A. L., et al. (2008). Correlating the transcriptome, proteome, and metabolome in the environmental adaptation of a hyperthermophile. Journal of Proteome Research, 7, 1027–1035.PubMedCrossRefGoogle Scholar
  91. Van Aggelen, G., Ankley, G. T., Baldwin, W. S., Bearden, D. W., Benson, W. H., Chipman, J. K., et al. (2010). Integrating Omic technologies into aquatic ecological risk assessment and environmental monitoring: Hurdles, achievements, and future outlook. Environmental Health Perspectives, 118, 1–5.PubMedGoogle Scholar
  92. Vandenbrouck, T., Jones, O. A. H., Dom, N., Griffin, J. L., & De Coen, W. (2010). Mixtures of similarly acting compounds in Daphnia magna: From gene to metabolite and beyond. Environment International, 36, 254–268.PubMedCrossRefGoogle Scholar
  93. Viant, M. R. (2007). Metabolomics of aquatic organisms: The new ‘omics’ on the block. Marine Ecology Progress Series, 332, 301–306.CrossRefGoogle Scholar
  94. Viant, M. R. (2008). Recent developments in environmental metabolomics. Molecular Biosystems, 4, 980–986.PubMedCrossRefGoogle Scholar
  95. Viant, M. R., Rosenblum, E. S., & Tjeerdema, R. S. (2003). NMR-based metabolomics: A powerful approach for characterizing the effects of environmental stressors on organism health. Environmental Science and Technology, 37, 4982–4989.PubMedCrossRefGoogle Scholar
  96. Viant, M. R., Bearden, D. W., Bundy, J. G., Burton, I. W., Collette, T. W., Ekman, D. R., et al. (2009). International NMR-based environmental metabolomics intercomparison exercise. Environmental Science and Technology, 43, 219–225.PubMedCrossRefGoogle Scholar
  97. Villas-Boas, S. G., & Bruheim, P. (2007). The potential of metabolomics tools in Bioremediation studies. OMICS: A Journal of Integrative Biology, 11, 305–313.CrossRefGoogle Scholar
  98. Wallis, C. M., Huber, D. P. W., & Lewis, K. J. (2011). Ecosystem, location, and climate effects on foliar secondary metabolites of lodge pole pine populations from central British Columbia. Journal of Chemical Ecology, 37, 607–621.PubMedCrossRefGoogle Scholar
  99. Warne, M. A., Lenz, E. M., Osborn, D., Weeks, J. M., & Nicholson, J. K. (2000). An NMR-based metabolomic investigation of the toxic effects of 3-trifluoromethyl-aniline on the earthworm Eisenia veneta. Biomarkers, 5, 56–72.CrossRefGoogle Scholar
  100. Weber, R. J. M., & Viant, M. R. (2010). MI-Pack: Increased confidence of metabolite identification in mass spectra by integrating accurate masses and metabolic pathways. Chemometrics and Intelligent Laboratory Systems, 104, 75–82.CrossRefGoogle Scholar
  101. Weber, R. J. M., Southam, A. D., Sommer, U., & Viant, M. R. (2011). Characterization of isotopic abundance measurements in high resolution FT-ICR and Orbitrap mass spectra for improved confidence of metabolite identification. Analytical Chemistry, 83, 3737–3743.PubMedCrossRefGoogle Scholar
  102. Wei, R., Li, G. D., & Seymour, A. B. (2010). High-throughput and multiplexed LC/MS/MRM method for targeted metabolomics. Analytical Chemistry, 82, 5527–5533.PubMedCrossRefGoogle Scholar
  103. Wetzel, D. L., Reynolds, J. E., Sprinkel, J. M., Schwacke, L., Mercurio, P., & Rommel, S. A. (2010). Fatty acid profiles as a potential lipidomic biomarker of exposure to brevetoxin for endangered Florida manatees (Trichechus manatus latirostris). Science of the Total Environment, 408, 6124–6133.PubMedCrossRefGoogle Scholar
  104. Wiesemeier, T., Hay, M., & Pohnert, G. (2007). The potential role of wound-activated volatile release in the chemical defence of the brown alga Dictyota dichotoma: Blend recognition by marine herbivores. Aquatic Sciences, 69, 403–412.CrossRefGoogle Scholar
  105. Williams, E. S., Panko, J., & Paustenbach, D. J. (2009). The European Union’s REACH regulation: A review of its history and requirements. Critical Reviews in Toxicology, 39, 553–575.PubMedCrossRefGoogle Scholar
  106. Wilson, M. P., & Schwarzman, M. R. (2009). Toward a new US chemicals policy: Rebuilding the foundation to advance new science, green chemistry, and environmental health. Environmental Health Perspectives, 117, 1202–1209.PubMedCrossRefGoogle Scholar
  107. Wilson, I. D., Nicholson, J. K., Castro-Perez, J., Granger, J. H., Johnson, K. A., Smith, B. W., et al. (2005a). High resolution “Ultra performance” liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. Journal of Proteome Research, 4, 591–598.PubMedCrossRefGoogle Scholar
  108. Wilson, I. D., Plumb, R., Granger, J., Major, H., Williams, R., & Lenz, E. A. (2005b). HPLC-MS-based methods for the study of metabolomics. Journal of Chromatography B, 817, 67–76.CrossRefGoogle Scholar
  109. Wu, H., Southam, A. D., Hines, A., & Viant, M. R. (2008). High throughput tissue extraction protocol for NMR- and MS-based metabolomics. Analytical Biochemistry, 372, 204–212.PubMedCrossRefGoogle Scholar
  110. Xu, J. L., Chen, D. Y., Yan, X. J., Chen, J. J., & Zhou, C. X. (2010). Global characterization of the photosynthetic glycerolipids from a marine diatom Stephanodiscus sp. by ultra performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight mass spectrometry. Analytica Chimica Acta, 663, 60–68.PubMedCrossRefGoogle Scholar
  111. Zelena, E., Dunn, W. B., Broadhurst, D., Francis-McIntyre, S., Carroll, K. M., Begley, P., et al. (2009). Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum. Analytical Chemistry, 81, 1357–1364.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of BiosciencesUniversity of BirminghamBirminghamUK
  2. 2.NERC Biomolecular Analysis Facility—Metabolomics Node (NBAF-B)University of BirminghamBirminghamUK

Personalised recommendations