Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mass spectrometry based environmental metabolomics: a primer and review

Abstract

Environmental metabolomics can be described as the study of the interactions of living organisms with their natural environments at the metabolic level. Until recently, nuclear magnetic resonance (NMR) spectroscopy has been the primary bioanalytical tool for measuring metabolite levels in this field. While NMR has some specific advantages, the higher sensitivity offered by mass spectrometry (MS) is beginning to revolutionise our ability to probe environmental metabolomes. This review provides the first comprehensive overview of the use and capabilities of MS within environmental metabolomics. Its primary aims are to introduce environmental scientists to the range of MS approaches used in metabolomics and to highlight the breadth and diversity of environmental and ecological research conducted, from ecophysiology and ecotoxicology to chemical ecology. The review is structured around MS approaches: non-targeted gas chromatography–MS, non-targeted directed infusion MS, and both non-targeted and targeted liquid chromatography–MS. Each section begins with a brief introduction to the analytical method, including some advantages and limitations in the context of metabolomics research, and then exemplifies the use of that technique in environmental metabolomics. The review concludes with a discussion on some of the challenges that remain in MS based environmental metabolomics and provides recommendations for the path ahead.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Aliferis, K. A., & Chrysayi-Tokousbalides, M. (2011). Metabolomics in pesticide research and development: Review and future perspectives. Metabolomics, 7, 35–53.

  2. Allen, A. E., Dupont, C. L., Obornik, M., Horak, A., Nunes-Nesi, A., McCrow, J. P., et al. (2011). Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature, 473, 203–207.

  3. Allwood, J. W., Erban, A., de Koning, S., Dunn, W. B., Luedemann, A., Lommen, A., et al. (2009). Inter-laboratory reproducibility of fast gas chromatography-electron impact-time of flight mass spectrometry (GC-EI-TOF/MS) based plant metabolomics. Metabolomics, 5, 479–496.

  4. Avery, E. L., Dunstan, R. H., & Nell, J. A. (1998). The use of lipid metabolic profiling to assess the biological impact of marine sewage pollution. Archives of Environmental Contamination and Toxicology, 35, 229–235.

  5. Barofsky, A., Vidoudez, C., & Pohnert, G. (2009). Metabolic profiling reveals growth stage variability in diatom exudates. Limnology and Oceanography: Methods, 7, 382–390.

  6. Booth, S. C., Workentine, M. L., Wen, J., Shaykhutdinov, R., Vogel, H. J., Ceri, H., et al. (2011). Differences in metabolism between the biofilm and planktonic response to metal stress. Journal of Proteome Research, 10, 3190–3199.

  7. Brito-Echeverria, J., Lucio, M., Lopez-Lopez, A., Anton, J., Schmitt-Kopplin, P., & Rossello-Mora, R. (2011). Response to adverse conditions in two strains of the extremely halophilic species Salinibacter ruber. Extremophiles, 15, 379–389.

  8. Brown, S. C., Kruppa, G., & Dasseux, J. L. (2005). Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrometry Reviews, 24, 223–231.

  9. Brügger, B., Erben, G., Sandhoff, R., Wieland, F. T., & Lehmann, W. D. (1997). Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proceedings of the National academy of Sciences of the United States of America, 94, 2339–2344.

  10. Bundy, J. G., Davey, M. P., & Viant, M. R. (2009). Environmental metabolomics: A critical review and future perspectives. Metabolomics, 5, 3–21.

  11. Chen, J., Canales, L., & Neal, R. E. (2011). Multi-segment direct inject nano-ESI-LTQ-FT-ICR-MS/MS for protein identification. Proteome Science, 9, 38.

  12. Colbourne, J. K., Pfrender, M. E., Gilbert, D., Thomas, W. K., Tucker, A., Oakley, T. H., et al. (2011). The ecoresponsive genome of Daphnia pulex. Science, 331, 555–561.

  13. Cubbon, S., Antonio, C., Wilson, J., & Thomas-Oates, J. (2010). Metabolomic applications of HILIC-LC-MS. Mass Spectrometry Reviews, 29, 671–684.

  14. Davey, M. P., Burrell, M. M., Woodward, F. I., & Quick, W. P. (2008). Population-specific metabolic phenotypes of Arabidopsis lyrata ssp. petraea. New Phytologist, 177, 380–388.

  15. Davey, M. P., Woodward, F. I., & Quick, W. P. (2009). Intraspecific variation in cold-temperature metabolic phenotypes of Arabidopsis lyrata ssp. petraea. Metabolomics, 5, 138–149.

  16. Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26, 51–78.

  17. Dodson, S. I., & Hanazato, T. (1995). Commentary on effects of anthropogenic and natural organic-chemicals on development, swimming behavior, and reproduction of Daphnia, a key member of aquatic ecosystems. Environmental Health Perspectives, 103, 7–11.

  18. Dunn, W. B., & Ellis, D. I. (2005). Metabolomics: Current analytical platforms and methodologies. Trends in Analytical Chemistry, 24, 285–294.

  19. Dunn, W. B., Broadhurst, D. I., Atherton, H. J., Goodacre, R., & Griffin, J. L. (2011). Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chemical Society Reviews, 40, 387–426.

  20. Dwivedi, P., Wu, P., Klopsch, S. J., Puzon, G. J., Xun, L., & Hill, H. H. (2008). Metabolic profiling by ion mobility mass spectrometry (IMMS). Metabolomics, 4, 63–80.

  21. Epperson, L. E., Karimpour-Fard, A., Hunter, L. E., & Martin, S. L. (2011). Metabolic cycles in a circannual hibernator. Physiological Genomics, 43, 799–807.

  22. Fiehn, O. (2008). Extending the breadth of metabolite profiling by gas chromatography coupled to mass spectrometry. Trends in Analytical Chemistry, 27, 261–269.

  23. Flores-Valverde, A. M., & Hill, E. M. (2008). Methodology for profiling the steroid metabolome in animal tissues using ultraperformance liquid chromatography-electrospray-time-of-flight mass spectrometry. Analytical Chemistry, 80, 8771–8779.

  24. Flores-Valverde, A. M., Horwood, J., & Hill, E. M. (2010). Disruption of the steroid metabolome in fish caused by exposure to the environmental estrogen 17 alpha-ethinylestradiol. Environmental Science and Technology, 44, 3552–3558.

  25. Garcia-Reyero, N., & Perkins, E. J. (2011). Systems biology: Leading the revolution in ecotoxicology. Environmental Toxicology and Chemistry, 30, 265–273.

  26. Gika, H. G., Theodoridis, G. A., & Wilson, I. D. (2008). Hydrophilic interaction and reversed-phase ultra-performance liquid chromatography TOF-MS for metabolomic analysis of Zucker rat urine. Journal of Separation Science, 31, 1598–1608.

  27. Gohlke, R. S., & McLafferty, F. W. (1993). Early gas chromatography/mass spectrometry. Journal of the American Society of Mass Spectrometry, 4, 367–371.

  28. Griffiths, W. J., & Wang, Y. Q. (2009). Mass spectrometry: From proteomics to metabolomics and lipidomics. Chemical Society Reviews, 38, 1882–1896.

  29. Halket, J. M., Przyborowska, A., Stein, S. E., Mallard, W. G., Down, S., & Chalmers, R. A. (1999). Deconvolution gas chromatography mass spectrometry of urinary organic acids—potential for pattern recognition and automated identification of metabolic disorders. Rapid Communications in Mass Spectrometry, 13, 279–284.

  30. Han, J., Danell, R. M., Patel, J. R., Gumerov, D. R., Scarlett, C. O., Speir, J. P., et al. (2008). Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry. Metabolomics, 4, 128–140.

  31. Han, J., Datla, R., Chan, S., & Borchers, C. H. (2009). Mass spectrometry-based technologies for high-throughput metabolomics. Bioanalysis, 1, 1665–1684.

  32. Hill, R. W., Li, C., Jones, A. D., Gunn, J. P., & Frade, P. R. (2010). Abundant betaines in reef-building corals and ecological indicators of a photoprotective role. Coral Reefs, 29, 869–880.

  33. Hoffman, D. E., Jonsson, P., Bylesjo, M., Trygg, J., Antti, H., Eriksson, M. E., et al. (2010). Changes in diurnal patterns within the Populus transcriptome and metabolome in response to photoperiod variation. Plant, Cell and Environment, 33, 1298–1313.

  34. Holmes, E., Loo, R. L., Stamler, J., Bictash, M., Yap, I. K. S., Chan, Q., et al. (2008). Human metabolic phenotype diversity and its association with diet and blood pressure. Nature, 453, 396–400.

  35. Hop, C., Chen, Y., & Yu, L. J. (2005). Uniformity of ionization response of structurally diverse analytes using a chip-based nanoelectrospray ionization source. Rapid Communications in Mass Spectrometry, 19, 3139–3142.

  36. Hu, Q. Z., Noll, R. J., Li, H. Y., Makarov, A., Hardman, M., & Cooks, R. G. (2005). The Orbitrap: A new mass spectrometer. Journal of Mass Spectrometry, 40, 430–443.

  37. Ivanišević, J., Thomas, O. P., Lejeusne, C., Chevaldonne, P., & Perez, T. (2011). Metabolic fingerprinting as an indicator of biodiversity: Towards understanding inter-specific relationships among Homoscleromorpha sponges. Metabolomics, 7, 289–304.

  38. Jansen, J. J., Allwood, J. W., Marsden-Edwards, E., van der Putten, W. H., Goodacre, R., & van Dam, N. M. (2009). Metabolomic analysis of the interaction between plants and herbivores. Metabolomics, 5, 150–161.

  39. Janz, D., Behnke, K., Schnitzler, J. P., Kanawati, B., Schmitt-Kopplin, P., & Polle, A. (2010). Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms. BMC Plant Biology, 10, 150.

  40. Jones, O. A. H., Spurgeon, D. J., Svendsen, C., & Griffin, J. L. (2008). A metabolomics based approach to assessing the toxicity of the polyaromatic hydrocarbon pyrene to the earthworm Lumbricus rubellus. Chemosphere, 71, 601–609.

  41. Junot, C., Madalinski, G., Tabet, J. C., & Ezan, E. (2010). Fourier transform mass spectrometry for metabolome analysis. Analyst, 135, 2203–2219.

  42. Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K. F., Itoh, M., Kawashima, S., et al. (2006). From genomics to chemical genomics: New developments in KEGG. Nucleic Acids Research, 34, D354–D357.

  43. Kawana, S., Nakagawa, K., Hasegawa, Y., Kobayashi, H., & Yamaguchi, S. (2008). Improvement of sample throughput using fast gas chromatography mass-spectrometry for biochemical diagnosis of organic acid disorders. Clinica Chimica Acta, 392, 34–40.

  44. Khalil, M. B., Hou, W., Zhou, H., Elisma, F., Swayne, L. A., Blanchard, A. P., et al. (2010). Lipidomics era: Accomplishments and challenges. Mass Spectrometry Reviews, 29, 877–929.

  45. Kind, T., & Fiehn, O. (2011). Advances in structure elucidation of small molecules using mass spectrometry. Bioanalytical Reviews, 2, 23–60.

  46. Kind, T., Wohlgemuth, G., Lee, D. Y., Lu, Y., Palazoglu, M., Shahbaz, S., et al. (2009). FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Analytical Chemistry, 81, 10038–10048.

  47. Kluender, C., Sans-Piche, F., Riedl, J., Altenburger, R., Hartig, C., Laue, G., et al. (2009). A metabolomics approach to assessing phytotoxic effects on the green alga Scenedesmus vacuolatus. Metabolomics, 5, 59–71.

  48. Koek, M. M., Jellema, R. H., van der Greef, J., Tas, A. C., & Hankemeier, T. (2011a). Quantitative metabolomics based on gas chromatography mass spectrometry: Status and perspectives. Metabolomics, 7, 307–328.

  49. Koek, M. M., van der Kloet, F. M., Kleemann, R., Kooistra, T., Verheij, E. R., & Hankemeier, T. (2011b). Semi-automated non-target processing in GC × GC-MS metabolomics analysis: Applicability for biomedical studies. Metabolomics, 7, 1–14.

  50. Koulman, A., Cao, M., Faville, M., Lane, G., Mace, W., & Rasmussen, S. (2009). Semi-quantitative and structural metabolic phenotyping by direct infusion ion trap mass spectrometry and its application in genetical metabolomics. Rapid Communications in Mass Spectrometry, 23, 2253–2263.

  51. Lai, L., Michopoulos, F., Gika, H., Theodoridis, G., Wilkinson, R. W., Odedra, R., et al. (2010). Methodological considerations in the development of HPLC-MS methods for the analysis of rodent plasma for metabolomic studies. Molecular Biosystems, 6, 108–120.

  52. Lee, J. S., Kim, Y. S., Park, S., Kim, J., Kang, S. J., Lee, M. H., et al. (2011). Exceptional production of both prodigiosin and cycloprodigiosin as major metabolic constituents by a novel marine bacterium, Zooshikella rubidus S1-1. Applied and Environmental Microbiology, 77, 4967–4973.

  53. Li, C., Hill, R. W., & Jones, A. D. (2010). Determination of betaine metabolites and dimethylsulfoniopropionate in coral tissues using liquid chromatography-time-of-flight mass spectrometry and stable isotope-labeled internal standards. Journal of Chromatography B, 878, 1809–1816.

  54. Lin, C. Y., Viant, M. R., & Tjeerdema, R. S. (2006). Metabolomics: Methodologies and applications in the environmental sciences. Journal of Pesticide Science, 31, 245–251.

  55. Macel, M., van Dam, N. M., & Keurentjes, J. J. B. (2010). Metabolomics: The chemistry between ecology and genetics. Molecular Ecology Resources, 10, 583–593.

  56. McKelvie, J. R., Yuk, J., Xu, Y. P., Simpson, A. J., & Simpson, M. J. (2009). (1)H NMR and GC/MS metabolomics of earthworm responses to sub-lethal DDT and endosulfan exposure. Metabolomics, 5, 84–94.

  57. Michaud, M. R., & Denlinger, D. L. (2007). Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): A metabolomic comparison. Journal of Comparative Physiology B, 177, 753–763.

  58. Michaud, M. R., Benoit, J. B., Lopez-Martinez, G., Elnitsky, M. A., Lee, R. E., & Denlinger, D. L. (2008). Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing and desiccation in the Antarctic midge, Belgica antarctica. Journal of Insect Physiology, 54, 645–655.

  59. Michopoulos, F., Lai, L., Gika, H., Theodoridis, G., & Wilson, I. (2009). UPLC-MS-based analysis of human plasma for metabolomics using solvent precipitation or solid phase extraction. Journal of Proteome Research, 8, 2114–2121.

  60. Moing, A., Maucourt, M., Renaud, C., Gaudillere, M., Brouquisse, R., Lebouteiller, B., et al. (2004). Quantitative metabolic profiling by 1-dimensional H-1-NMR analyses: Application to plant genetics and functional genomics. Functional Plant Biology, 31, 889–902.

  61. Morrison, N., Bearden, D., Bundy, J. G., Collette, T., Currie, F., Davey, M. P., et al. (2007). Standard reporting requirements for biological samples in metabolomics experiments: Environmental context. Metabolomics, 3, 203–210.

  62. Murphy, R. C., & Gaskell, S. J. (2011). New applications of mass spectrometry in lipid analysis. Journal of Biological Chemistry, 286, 25427–25433.

  63. Nappo, M., Berkov, S., Codina, C., Avila, C., Messina, P., Zupo, V., et al. (2009). Metabolite profiling of the benthic diatom Cocconeis scutellum by GC-MS. Journal of Applied Phycology, 21, 295–306.

  64. Nelson, C. J., Otis, J. P., Martin, S. L., & Carey, H. V. (2009). Analysis of the hibernation cycle using LC-MS-based metabolomics in ground squirrel liver. Physiological Genomics, 37, 43–51.

  65. Nelson, C. J., Otis, J. P., & Carey, H. V. (2010). Global analysis of circulating metabolites in hibernating ground squirrels. Comparative Biochemistry and Physiology D, 5, 265–273.

  66. Orsini, L., Decaestecker, E., De Meester, L., Pfrender, M. E., & Colbourne, J. K. (2011). Genomics in the ecological arena. Biology Letters, 7, 2–3.

  67. Ossipov, V., Ossipova, S., Bykov, V., Oksanen, E., Koricheva, J., & Haukioja, E. (2008). Application of metabolomics to genotype and phenotype discrimination of birch trees grown in a long-term open-field experiment. Metabolomics, 4, 39–51.

  68. Pasikanti, K. K., Ho, P. C., & Chan, E. C. Y. (2008). Development and validation of a gas chromatography/mass spectrometry metabolomic platform for the global profiling of urinary metabolites. Rapid Communications in Mass Spectrometry, 22, 2984–2992.

  69. Plumb, R. S., Stumpf, C. L., Gorenstein, M. V., Castro-Perez, J. M., Dear, G. J., Anthony, M., et al. (2002). Metabolomics: The use of electrospray mass spectrometry coupled to reversed-phase liquid chromatography shows potential for the screening of rat urine in drug development. Rapid Communications in Mass Spectrometry, 16, 1991–1996.

  70. Plumb, R. S., Johnson, K. A., Rainville, P., Shockcor, J. P., Williams, R., Granger, J. H., et al. (2006). The detection of phenotypic differences in the metabolic plasma profile of three strains of Zucker rats at 20 weeks of age using ultra-performance liquid chromatography/orthogonal acceleration time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 20, 2800–2806.

  71. Poynton, H. C., Taylor, N. S., Hicks, J., Colson, K., Chan, S. R., Clark, C., et al. (2011). Metabolomics of microliter hemolymph samples enables an improved understanding of the combined metabolic and transcriptional responses of Daphnia magna to cadmium. Environmental Science and Technology, 45, 3710–3717.

  72. Prince, E. K., & Pohnert, G. (2010). Searching for signals in the noise: Metabolomics in chemical ecology. Analytical and Bioanalytical Chemistry, 396, 193–197.

  73. Ralston-Hooper, K., Hopf, A., Oh, C., Zhang, X., Adamec, J., & Sepulveda, M. S. (2008). Development of GCxGC/TOF-MS metabolomics for use in ecotoxicological studies with invertebrates. Aquatic Toxicology, 88, 48–52.

  74. Redestig, H., Kobayashi, M., Saito, K., & Kusano, M. (2011). Exploring matrix effects and quantification performance in metabolomics experiments using artificial biological gradients. Analytical Chemistry, 83, 5645–5651.

  75. Robert, J. A., Madilao, L. L., White, R., Yanchuk, A., King, J., & Bohlmann, J. (2010). Terpenoid metabolite profiling in Sitka spruce identifies association of dehydroabietic acid, (+)-3-carene, and terpinolene with resistance against white pine weevil. Botany-Botanique, 88, 810–820.

  76. Roberts, L. D., McCombie, G., Titman, C. M., & Griffin, J. L. (2008). A matter of fat: An introduction to lipidomic profiling methods. Journal of Chromatography B, 871, 174–181.

  77. Robinson, A. R., Ukrainetz, N. K., Kang, K. Y., & Mansfield, S. D. (2007). Metabolite profiling of Douglas-fir (Pseudotsuga menziesii) field trials reveals strong environmental and weak genetic variation. New Phytologist, 174, 762–773.

  78. Rochfort, S. (2005). Metabolomics reviewed: A new “Omics” platform technology for systems biology and implications for natural products research. Journal of Natural Products, 68, 1813–1820.

  79. Samuelsson, L. M., & Larsson, D. G. J. (2008). Contributions from metabolomics to fish research. Molecular Biosystems, 4, 974–979.

  80. Shaw, J. R., Pfrender, M., Eads, B. D., Klaper, R., Callaghan, A., Colson, I., et al. (2007). Daphnia as an emerging model for toxicological genomics. In C. Hogstrand & P. Kille (Eds.), Advances in experimental biology on toxicogenomics (pp. 165–219). Amsterdam: Elsevier Press.

  81. Snape, J. R., Maund, S. J., Pickford, D. B., & Hutchinson, T. H. (2004). Ecotoxicogenomics: The challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquatic Toxicology, 67, 143–154.

  82. Soga, T., Igarashi, K., Ito, C., Mizobuchi, K., Zimmermann, H. P., & Tomita, M. (2009). Metabolomic profiling of anionic metabolites by capillary electrophoresis mass spectrometry. Analytical Chemistry, 81, 6165–6174.

  83. Southam, A. D., Payne, T. G., Cooper, H. J., Arvanitis, T. N., & Viant, M. R. (2007). Dynamic range and mass accuracy of wide-scan direct infusion nanoelectrospray Fourier transform ion cyclotron resonance mass spectrometry-based metabolomics increased by the spectral stitching method. Analytical Chemistry, 79, 4595–4602.

  84. Southam, A. D., Lange, A., Hines, A., Hill, E. M., Katsu, Y., Iguchi, T., et al. (2011). Metabolomics reveals target and off-target toxicities of a model organophosphate pesticide to roach (Rutilus rutilus): Implications for biomonitoring. Environmental Science and Technology, 45, 3759–3767.

  85. Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221.

  86. Taylor, N. S., Weber, R. J. M., Southam, A. D., Payne, T. G., Hrydziuszko, O., Arvanitis, T. N., et al. (2009). A new approach to toxicity testing in Daphnia magna: Application of high throughput FT-ICR mass spectrometry metabolomics. Metabolomics, 5, 44–58.

  87. Taylor, N. S., Weber, R. J. M., White, T. A., & Viant, M. R. (2010). Discriminating between different acute chemical toxicities via changes in the Daphnid metabolome. Toxicological Sciences, 118, 307–317.

  88. Tolstikov, V. V., & Fiehn, O. (2002). Analysis of highly polar compounds of plant origin: Combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Analytical Biochemistry, 301, 298–307.

  89. Tolstikov, V. V., Lommen, A., Nakanishi, K., Tanaka, N., & Fiehn, O. (2003). Monolithic silica-based capillary reversed-phase liquid chromatography/electrospray mass spectrometry for plant metabolomics. Analytical Chemistry, 75, 6737–6740.

  90. Trauger, S. A., Kalisak, E., Kalisiak, J., Morita, H., Weinberg, M. V., Menon, A. L., et al. (2008). Correlating the transcriptome, proteome, and metabolome in the environmental adaptation of a hyperthermophile. Journal of Proteome Research, 7, 1027–1035.

  91. Van Aggelen, G., Ankley, G. T., Baldwin, W. S., Bearden, D. W., Benson, W. H., Chipman, J. K., et al. (2010). Integrating Omic technologies into aquatic ecological risk assessment and environmental monitoring: Hurdles, achievements, and future outlook. Environmental Health Perspectives, 118, 1–5.

  92. Vandenbrouck, T., Jones, O. A. H., Dom, N., Griffin, J. L., & De Coen, W. (2010). Mixtures of similarly acting compounds in Daphnia magna: From gene to metabolite and beyond. Environment International, 36, 254–268.

  93. Viant, M. R. (2007). Metabolomics of aquatic organisms: The new ‘omics’ on the block. Marine Ecology Progress Series, 332, 301–306.

  94. Viant, M. R. (2008). Recent developments in environmental metabolomics. Molecular Biosystems, 4, 980–986.

  95. Viant, M. R., Rosenblum, E. S., & Tjeerdema, R. S. (2003). NMR-based metabolomics: A powerful approach for characterizing the effects of environmental stressors on organism health. Environmental Science and Technology, 37, 4982–4989.

  96. Viant, M. R., Bearden, D. W., Bundy, J. G., Burton, I. W., Collette, T. W., Ekman, D. R., et al. (2009). International NMR-based environmental metabolomics intercomparison exercise. Environmental Science and Technology, 43, 219–225.

  97. Villas-Boas, S. G., & Bruheim, P. (2007). The potential of metabolomics tools in Bioremediation studies. OMICS: A Journal of Integrative Biology, 11, 305–313.

  98. Wallis, C. M., Huber, D. P. W., & Lewis, K. J. (2011). Ecosystem, location, and climate effects on foliar secondary metabolites of lodge pole pine populations from central British Columbia. Journal of Chemical Ecology, 37, 607–621.

  99. Warne, M. A., Lenz, E. M., Osborn, D., Weeks, J. M., & Nicholson, J. K. (2000). An NMR-based metabolomic investigation of the toxic effects of 3-trifluoromethyl-aniline on the earthworm Eisenia veneta. Biomarkers, 5, 56–72.

  100. Weber, R. J. M., & Viant, M. R. (2010). MI-Pack: Increased confidence of metabolite identification in mass spectra by integrating accurate masses and metabolic pathways. Chemometrics and Intelligent Laboratory Systems, 104, 75–82.

  101. Weber, R. J. M., Southam, A. D., Sommer, U., & Viant, M. R. (2011). Characterization of isotopic abundance measurements in high resolution FT-ICR and Orbitrap mass spectra for improved confidence of metabolite identification. Analytical Chemistry, 83, 3737–3743.

  102. Wei, R., Li, G. D., & Seymour, A. B. (2010). High-throughput and multiplexed LC/MS/MRM method for targeted metabolomics. Analytical Chemistry, 82, 5527–5533.

  103. Wetzel, D. L., Reynolds, J. E., Sprinkel, J. M., Schwacke, L., Mercurio, P., & Rommel, S. A. (2010). Fatty acid profiles as a potential lipidomic biomarker of exposure to brevetoxin for endangered Florida manatees (Trichechus manatus latirostris). Science of the Total Environment, 408, 6124–6133.

  104. Wiesemeier, T., Hay, M., & Pohnert, G. (2007). The potential role of wound-activated volatile release in the chemical defence of the brown alga Dictyota dichotoma: Blend recognition by marine herbivores. Aquatic Sciences, 69, 403–412.

  105. Williams, E. S., Panko, J., & Paustenbach, D. J. (2009). The European Union’s REACH regulation: A review of its history and requirements. Critical Reviews in Toxicology, 39, 553–575.

  106. Wilson, M. P., & Schwarzman, M. R. (2009). Toward a new US chemicals policy: Rebuilding the foundation to advance new science, green chemistry, and environmental health. Environmental Health Perspectives, 117, 1202–1209.

  107. Wilson, I. D., Nicholson, J. K., Castro-Perez, J., Granger, J. H., Johnson, K. A., Smith, B. W., et al. (2005a). High resolution “Ultra performance” liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. Journal of Proteome Research, 4, 591–598.

  108. Wilson, I. D., Plumb, R., Granger, J., Major, H., Williams, R., & Lenz, E. A. (2005b). HPLC-MS-based methods for the study of metabolomics. Journal of Chromatography B, 817, 67–76.

  109. Wu, H., Southam, A. D., Hines, A., & Viant, M. R. (2008). High throughput tissue extraction protocol for NMR- and MS-based metabolomics. Analytical Biochemistry, 372, 204–212.

  110. Xu, J. L., Chen, D. Y., Yan, X. J., Chen, J. J., & Zhou, C. X. (2010). Global characterization of the photosynthetic glycerolipids from a marine diatom Stephanodiscus sp. by ultra performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight mass spectrometry. Analytica Chimica Acta, 663, 60–68.

  111. Zelena, E., Dunn, W. B., Broadhurst, D., Francis-McIntyre, S., Carroll, K. M., Begley, P., et al. (2009). Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum. Analytical Chemistry, 81, 1357–1364.

Download references

Acknowledgments

This work was in part supported by the UK Natural Environmental Research Council (NERC) Biomolecular Analysis Facility at the University of Birmingham (R8-H10-61).

Author information

Correspondence to Mark R. Viant.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Viant, M.R., Sommer, U. Mass spectrometry based environmental metabolomics: a primer and review. Metabolomics 9, 144–158 (2013). https://doi.org/10.1007/s11306-012-0412-x

Download citation

Keywords

  • Stress
  • Mechanism
  • Metabolic fingerprinting
  • Orbitrap
  • FT-ICR
  • LC–MS/MS