Advertisement

Metabolomics

, Volume 8, Supplement 1, pp 105–110 | Cite as

MET-IDEA version 2.06; improved efficiency and additional functions for mass spectrometry-based metabolomics data processing

  • Zhentian Lei
  • Haiquan Li
  • Junil Chang
  • Patrick X. Zhao
  • Lloyd W. Sumner
Software Article

Abstract

Metabolomics Ion-based Data Extraction Algorithm (MET-IDEA) is a computer program for processing large-scale metabolomics data. MET-IDEA utilizes network Common Data Form (netCDF) data files available from a diversity of chromatographically coupled mass spectrometry (MS) systems, utilizes the sensitivity and selectivity associated with selected ion quantification, and greatly reduces the time and effort necessary to obtain large-scale organized data. This article reports on recent improvements to MET-IDEA which include new visualization of peak integrations, display of mass spectra associated with integrated peaks, and optional manual peak integration. The computational performance of MET-IDEA has also been improved to avoid memory overflow during the processing of large data sets and the software made compatible with 64 bit CPUs and operating systems. These new functions improve the performance of MET-IDEA, and they allow users to visualize peak integrations and curate the results through manual integration if desired. The improved version of MET-IDEA better facilitates the quantitative analysis of complex MS-based metabolomics data. MET-IDEA is freely available for academic and non commercial use at (http://bioinfo.noble.org/gateway/index.php?option=com_wrapper&Itemid=57). Commercial use is available via licensing agreement.

Keywords

MET-IDEA Data Processing Visualization Mass spectrometry GC–MS LC–MS Metabolomics 

References

  1. Baran, R., Kochi, H., Saito, N., Suematsu, M., Soga, T., Nishioka, T., et al. (2006). MathDAMP: A package for differential analysis of metabolite profiles. BMC Bioinformatics, 7(530), doi: 10.1186/1471-2105-7-530.
  2. Benkeblia, N., Shinano, T., & Osaki, M. (2007). Metabolite profiling and assessment of metabolome compartmentation of soybean leaves using non-aqueous fractionation and GC–MS analysis. Metabolomics, 3(3), 297–305.CrossRefGoogle Scholar
  3. Brechenmacher, L., Lei, Z., Libault, M., Findley, S., Sugawara, M., Sadowsky, M. J., et al. (2010). Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum. Plant Physiology, 153(4), 1808–1822. doi: 10.1104/pp.110.157800.PubMedCrossRefGoogle Scholar
  4. Broeckling, C. D., Reddy, I. R., Duran, A. L., Zhao, X. J., & Sumner, L. W. (2006). MET-IDEA: data extraction tool for mass spectrometry-based metabolomics. Analytical Chemistry, 78(13), 4334–4341. doi: 10.1021/ac0521596.PubMedCrossRefGoogle Scholar
  5. Broeckling, C. D., Broz, A. K., Bergelson, J., Manter, D. K., & Vivanco, J. M. (2008). Root exudates regulate soil fungal community composition and diversity. Applied and Environmental Microbiology, 74(3), 738–744. doi: 10.1128/aem.02188-07.PubMedCrossRefGoogle Scholar
  6. Dolan, J. W. (2009). Integration problems. LCGC North America, 27(10), 892–899.Google Scholar
  7. Duran, A. L., Yang, J., Wang, L. J., & Sumner, L. W. (2003). Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics, 19(17), 2283–2293. doi: 10.1093/bioinformatics/btg315.PubMedCrossRefGoogle Scholar
  8. Farag, M. A. (2008). Headspace analysis of volatile compounds in leaves from the Juglandaceae (Walnut) family. Journal of Essential Oil Research, 20(4), 323–327.CrossRefGoogle Scholar
  9. Farag, M. A. (2009). Chemical composition and biological activities of Asimina triloba leaf essential oil. Pharmaceutical Biology, 47(10), 982–986. doi: 10.1080/13880200902967995.CrossRefGoogle Scholar
  10. Farag, M. A., Ryu, C. M., Sumner, L. W., & Pare, P. W. (2006). GC–MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry, 67(20), 2262–2268. doi: 10.1016/j.phytochem.2006.07.021.PubMedCrossRefGoogle Scholar
  11. Farag, M. A., Huhman, D. V., Dixon, R. A., & Sumner, L. W. (2008). Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiology, 146(2), 387–402. doi: 10.1104/pp.107.108431.PubMedCrossRefGoogle Scholar
  12. Farag, M. A., Deavours, B. E., de Fatima, A., Naoumkina, M., Dixon, R. A., & Sumner, L. W. (2009). Integrated metabolite and transcript profiling identify a biosynthetic mechanism for hispidol in Medicago truncatula cell cultures. Plant Physiology, 151(3), 1096–1113. doi: 10.1104/pp.109.141481.PubMedCrossRefGoogle Scholar
  13. FDA. (2001). Guidance for industry: Bioanalytical method validation. Rockville, MD: FDA, pp. 1–25.Google Scholar
  14. Fiehn, O., Wohlgemuth, G., Scholz, M. (2005). Setup and annotation of metabolomic experiments by integrating biological and mass spectrometric metadata. In B. Ludascher, L. Raschid (Eds.), Data Integration in the Life Sciences, Proceedings (vol. 3615, pp. 224–239, Lecture Notes in Computer Science). Berlin: Springer-Verlag.Google Scholar
  15. Florida_DEP. (2011). CM-018-1.7 Laboratory policy regarding manual chromatographic peak integration. pp. 1–5. http://www.dep.state.fl.us/labs/cgi-bin/sop/sop1.asp?sect=CHEMISTRY.
  16. Hamzehzarghani, H., Paranidharan, V., Abu-Nada, Y., Kushalappa, A. C., Mamer, O., & Somers, D. (2008). Metabolic profiling to discriminate wheat near isogenic lines, with quantitative trait loci at chromosome 2DL, varying in resistance to Fusarium head blight. Canadian Journal of Plant Science, 88(4), 789–797.CrossRefGoogle Scholar
  17. Hiller, K., Hangebrauk, J., Jager, C., Spura, J., Schreiber, K., & Schomburg, D. (2009). MetaboliteDetector: Comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. Analytical Chemistry, 81(9), 3429–3439. doi: 10.1021/ac802689c.PubMedCrossRefGoogle Scholar
  18. Katajamaa, M., Miettinen, J., & Oresic, M. (2006). MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics, 22(5), 634–636. doi: 10.1093/bioinformatics/btk039.PubMedCrossRefGoogle Scholar
  19. Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmuller, E., et al. (2005). GMD@CSB.DB: the Golm metabolome database. Bioinformatics, 21(8), 1635–1638. doi: 10.1093/bioinformatics/bti236.PubMedCrossRefGoogle Scholar
  20. Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, 1(1), 387–396. doi: 10.1038/nprot.2006.59.PubMedCrossRefGoogle Scholar
  21. Lommen, A. (2009). MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Analytical Chemistry, 81(8), 3079–3086. doi: 10.1021/ac900036d.PubMedCrossRefGoogle Scholar
  22. Luedemann, A., Strassburg, K., Erban, A., & Kopka, J. (2008). TagFinder for the quantitative analysis of gas chromatography–mass spectrometry (GC–MS)-based metabolite profiling experiments. Bioinformatics, 24(5), 732–737. doi: 10.1093/bioinformatics/btn023.PubMedCrossRefGoogle Scholar
  23. Naoumkina, M., Vaghchhipawala, S., Tang, Y. H., Ben, Y. X., Powell, R. J., & Dixon, R. A. (2008). Metabolic and genetic perturbations accompany the modification of galactomannan in seeds of Medicago truncatula expressing mannan synthase from guar (Cyamopsis tetragonoloba L.). Plant Biotechnology Journal, 6(6), 619–631. doi: 10.1111/j.1467-7652.2008.00345.x.PubMedCrossRefGoogle Scholar
  24. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78(3), 779–787. doi: 10.1021/ac051437y.PubMedCrossRefGoogle Scholar
  25. Xu, P., Chen, F., Mannas, J. P., Feldman, T., Sumner, L. W., & Roossinck, M. J. (2008). Virus infection improves drought tolerance. New Phytologist, 180(4), 911–921. doi: 10.1111/j.1469-8137.2008.02627.x.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Zhentian Lei
    • 1
  • Haiquan Li
    • 1
    • 2
  • Junil Chang
    • 1
  • Patrick X. Zhao
    • 1
  • Lloyd W. Sumner
    • 1
  1. 1.Plant Biology DivisionThe Samuel Roberts Noble FoundationArdmoreUSA
  2. 2.General Internal Medicine, Department of MedicineUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations