, Volume 8, Issue 3, pp 433–443 | Cite as

A high-throughput metabolomics method to predict high concentration cytotoxicity of drugs from low concentration profiles

  • Stéphanie Heux
  • Thomas J. Fuchs
  • Joachim Buhmann
  • Nicola Zamboni
  • Uwe Sauer
Original Article


A major source of drug attrition in pharmacological development is drug toxicity, which eventually manifests itself in detrimental physiological effects. These effects can be assessed in large sample cohorts, but generating rich sets of output variables that are necessary to predict toxicity from lower drug dosages is problematic. Currently the throughput of methods that enable multi-parametric cellular readouts over many drugs and large ranges of concentrations is limited. Since metabolism is at the core of drug toxicity, we develop here a high-throughput intracellular metabolomics platform for relative measurement of 50–100 targeted metabolites by flow injection-tandem mass spectrometry. Specifically we focused on central metabolism of the yeast Saccharomyces cerevisiae because potential cytotoxic effects of drugs can be expected to affect this ubiquitous core network. By machine learning based on intracellular metabolite responses to 41 drugs that were administered at seven concentrations over three orders of magnitude, we demonstrate prediction of cytotoxicity in yeast from intracellular metabolome patterns obtained at much lower drug concentrations that exert no physiological toxicity. Furthermore, the 13C-determined intracellular response of metabolic fluxes to drug treatment demonstrates the functional performance of the network to be rather robust, until growth was compromised. Thus we provide evidence that phenotypic robustness to drug challenges is achieved by a flexible make-up of the metabolome.


Yeast metabolism Drug enzyme interaction Off-target drug effects Metabolomics Method Machine-learning 



S.H. gratefully acknowledges funding by Marie Curie Intra-European Fellowships (F6P-2005).

Supplementary material

11306_2011_386_MOESM1_ESM.doc (1.7 mb)
Supplementary material 1 (DOC 1787 kb)


  1. Andersen, M. E., & Krewski, D. (2009). Toxicity testing in the 21st century: Bringing the vision to life. Toxicological Sciences: An Official Journal of the Society of Toxicology, 107(2), 324–330.CrossRefGoogle Scholar
  2. Blank, L. M., Kuepfer, L., & Sauer, U. (2005). Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biology, 6(6), R49.Google Scholar
  3. Boer, V. M., Crutchfield, C. A., Bradley, P. H., Botstein, D., & Rabinowitz, J. D. (2010). Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations. Molecular Biology of the Cell, 21(1), 198–211.PubMedCrossRefGoogle Scholar
  4. Buscher, J. M., Czernik, D., Ewald, J. C., Sauer, U., & Zamboni, N. (2009). Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Analytical Chemistry, 81(6), 2135–2143.PubMedCrossRefGoogle Scholar
  5. Coen, M., Holmes, E., Lindon, J. C., & Nicholson, J. K. (2008). NMR-based metabolic profiling and metabonomic approaches to problems in molecular toxicology. Chemical Research in Toxicology, 21(1), 9–27.PubMedCrossRefGoogle Scholar
  6. Committee on Toxicity Testing and Assessment of Environmental Agents, N. R. C. (2007). Toxicity Testing in the 21st Century: A vision and a strategy. Washington, DC: The National Academies Press.Google Scholar
  7. Ellis, D. I., Dunn, W. B., Griffin, J. L., Allwood, J. W., & Goodacre, R. (2007). Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics, 8(9), 1243–1266.PubMedCrossRefGoogle Scholar
  8. Fendt, S. M., Buescher, J. M., Rudroff, F., Picotti, P., Zamboni, N., & Sauer, U. (2010a). Tradeoff between enzyme and metabolite efficiency maintains metabolic homeostasis upon perturbations in enzyme capacity. Molecular Systems Biology, 6, 356.PubMedGoogle Scholar
  9. Fendt, S. M., Oliveira, A. P., Christen, S., Picotti, P., Dechant, R. C., & Sauer, U. (2010b). Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast. Molecular Systems Biology, 6, 432.PubMedGoogle Scholar
  10. Feng, Y., Mitchison, T. J., Bender, A., Young, D. W., & Tallarico, J. A. (2009). Multi-parameter phenotypic profiling: Using cellular effects to characterize small-molecule compounds. Nature Reviews Drug Discovery, 8(7), 567–578.PubMedCrossRefGoogle Scholar
  11. Fischer, E., & Sauer, U. (2003). Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. European Journal of Biochemistry, 270(5), 880–891.PubMedCrossRefGoogle Scholar
  12. Fischer, E., & Sauer, U. (2005). Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nature Genetics, 37(6), 636–640.PubMedCrossRefGoogle Scholar
  13. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning. New York: Springer.CrossRefGoogle Scholar
  14. Hellerstein, M. K. (2003). In vivo measurement of fluxes through metabolic pathways: The missing link in functional genomics and pharmaceutical research. Annual Review of Nutrition, 23, 379–402.PubMedCrossRefGoogle Scholar
  15. Hillenmeyer, M. E., Fung, E., Wildenhain, J., Pierce, S. E., Hoon, S., Lee, W., et al. (2008). The chemical genomic portrait of yeast: Uncovering a phenotype for all genes. Science, 320(5874), 362–365.PubMedCrossRefGoogle Scholar
  16. Hopkins, A. L. (2008). Network pharmacology: The next paradigm in drug discovery. Nature Chemical Biology, 4(11), 682–690.PubMedCrossRefGoogle Scholar
  17. Kaddurah-Daouk, R., Kristal, B. S., & Weinshilboum, R. M. (2008). Metabolomics: A global biochemical approach to drug response and disease. Annual Review of Pharmacology and Toxicology, 48, 653–683.PubMedCrossRefGoogle Scholar
  18. Kapitzky, L., Beltrao, P., Berens, T. J., Gassner, N., Zhou, C., Wuster, A., et al. (2010). Cross-species chemogenomic profiling reveals evolutionarily conserved drug mode of action. Molecular Systems Biology, 6, 451.PubMedCrossRefGoogle Scholar
  19. Lehar, J., Stockwell, B. R., Giaever, G., & Nislow, C. (2008). Combination chemical genetics. Nature Chemical Biology, 4(11), 674–681.PubMedCrossRefGoogle Scholar
  20. Perlman, Z. E., Slack, M. D., Feng, Y., Mitchison, T. J., Wu, L. F., & Altschuler, S. J. (2004). Multidimensional drug profiling by automated microscopy. Science, 306(5699), 1194–1198.PubMedCrossRefGoogle Scholar
  21. Perlstein, E. O., Ruderfer, D. M., Roberts, D. C., Schreiber, S. L., & Kruglyak, L. (2007). Genetic basis of individual differences in the response to small-molecule drugs in yeast. Nature Genetics, 39(4), 496–502.PubMedCrossRefGoogle Scholar
  22. Porcu, M., & Chiarugi, A. (2005). The emerging therapeutic potential of sirtuin-interacting drugs: From cell death to lifespan extension. Trends in Pharmacological Sciences, 26(2), 94–103.PubMedCrossRefGoogle Scholar
  23. Reinke, A., Chen, J. C., Aronova, S., & Powers, T. (2006). Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p. Journal of Biological Chemistry, 281(42), 31616–31626.PubMedCrossRefGoogle Scholar
  24. Sauer, U. (2004). High-throughput phenomics: Experimental methods for mapping fluxomes. Current Opinion in Biotechnology, 15(1), 58–63.PubMedCrossRefGoogle Scholar
  25. Sauer, U. (2006). Metabolic networks in motion: 13C-based flux analysis. Molecular Systems Biology, 2, 62.PubMedCrossRefGoogle Scholar
  26. Schuetz, A., Min, J., Antoshenko, T., Wang, C. L., Allali-Hassani, A., Dong, A., et al. (2007). Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Structure, 15(3), 377–389.PubMedCrossRefGoogle Scholar
  27. Sonderegger, M., & Sauer, U. (2003). Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Applied and Environmental Microbiology, 69(4), 1990–1998.PubMedCrossRefGoogle Scholar
  28. Turner, S. M., & Hellerstein, M. K. (2005). Emerging applications of kinetic biomarkers in preclinical and clinical drug development. Current Opinion in Drug Discovery & Development, 8(1), 115–126.Google Scholar
  29. Verduyn, C., Postma, E., Scheffers, W. A., & Van Dijken, J. P. (1992). Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast, 8(7), 501–517.PubMedCrossRefGoogle Scholar
  30. Wagner, B. K., & Clemons, P. A. (2009). Connecting synthetic chemistry decisions to cell and genome biology using small-molecule phenotypic profiling. Current Opinion in Chemical Biology, 13(5–6), 539–548.PubMedCrossRefGoogle Scholar
  31. Wagner, B. K., Kitami, T., Gilbert, T. J., Peck, D., Ramanathan, A., Schreiber, S. L., et al. (2008). Large-scale chemical dissection of mitochondrial function. Nature Biotechnology, 26(3), 343–351.PubMedCrossRefGoogle Scholar
  32. Wiemken, A. (1990). Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Van Leeuwenhoek, 58(3), 209–217.PubMedCrossRefGoogle Scholar
  33. Young, D. W., Bender, A., Hoyt, J., McWhinnie, E., Chirn, G. W., Tao, C. Y., et al. (2008). Integrating high-content screening and ligand-target prediction to identify mechanism of action. Nature Chemical Biology, 4(1), 59–68.PubMedCrossRefGoogle Scholar
  34. Zamboni, N., Fendt, S. M., Ruhl, M., & Sauer, U. (2009). (13)C-based metabolic flux analysis. Nature Protocols, 4(6), 878–892.PubMedCrossRefGoogle Scholar
  35. Zamboni, N., Fischer, E., & Sauer, U. (2005). FiatFlux—a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinformatics, 6, 209.PubMedCrossRefGoogle Scholar
  36. Zamboni, N., & Sauer, U. (2004). Model-independent fluxome profiling from 2H and 13C experiments for metabolic variant discrimination. Genome Biology, 5(12), R99.PubMedCrossRefGoogle Scholar
  37. Zamboni, N., & Sauer, U. (2009). Novel biological insights through metabolomics and 13C-flux analysis. Current Opinion in Microbiology, 12(5), 553–558.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Stéphanie Heux
    • 1
    • 3
  • Thomas J. Fuchs
    • 2
    • 3
  • Joachim Buhmann
    • 2
    • 3
  • Nicola Zamboni
    • 1
    • 3
  • Uwe Sauer
    • 1
    • 3
  1. 1.Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
  2. 2.Department of Computer ScienceETH ZurichZurichSwitzerland
  3. 3.Competence Center for Systems Physiology and Metabolic DiseasesZurichSwitzerland

Personalised recommendations