Advertisement

Metabolomics

, Volume 8, Issue 5, pp 907–918 | Cite as

1H NMR-based metabolomic analysis of triptolide-induced toxicity in liver-specific cytochrome P450 reductase knockout mice

  • Xia Liu
  • Xiang Xue
  • Likun Gong
  • Xinming Qi
  • Yuanfeng Wu
  • Guozhen Xing
  • Yang Luan
  • Ying Xiao
  • Xiongfei Wu
  • Yan Li
  • Min Chen
  • Lingling Miao
  • Jun Yao
  • Jun Gu
  • Donghai LinEmail author
  • Jin RenEmail author
Original Article

Abstract

Triptolide (TL) is an active component of Tripterygium wilfordii Hook. F which is used to treat autoimmune and inflammatory disease. However, a high incidence of adverse effects is often observed in clinic. Previously we have demonstrated that cytochrome P450s (CYPs) are involved in the metabolism of TL and low activity of hepatic P450 reductase aggravates TL-induced toxicity. However, the underlying mechanisms of TL-induced toxicity mediated by hepatic CYPs have not been well delineated. Here, an integrated 1H NMR-based metabolomic analysis was performed to evaluate the global biochemical alteration in the liver-specific cytochrome P450 reductase (CPR) knockout (KO) mice and wild-type (WT) counterparts with a same dose of TL (0.5 mg/kg) administration. Dramatically different metabolic profiles indicated more severe hepatotoxicity and nephrotoxicity induced by TL in KO mice than in WT mice, which were confirmed by serum biochemistry and histopathological examination. Furthermore, the results from both multivariate statistical analysis and system statistical metabolic correlation analysis indicated that the significantly changed endogenous metabolites were primarily involved in oxidative stress, energy metabolism, amino acid metabolism, gut microflora metabolism, and choline metabolism. Our results reveal the molecular mechanisms of TL-induced toxicity in the condition of hepatic CYP inactivation. As CYP inactivation and/or inhibition are usually caused by genetic polymorphism and/or drug–drug interactions, personalized prescription according to enzyme activity of CYPs and metabolic profiling could be used to maximize therapeutic efficacy and avoid or reduce TL-induced toxicity clinically.

Keywords

Metabolomics Triptolide Toxicity Cytochrome P450 Hepatotoxicity 

Notes

Acknowledgments

We thank Erik Anderson and Professor Yi-zheng Wang for proof-reading, Professor Wen-sen Wu for histopathology evaluation, Hua Sheng, Heng-lei Lu, Bei-yan Liu, Cheng Zheng and Jing Lu for technical assistance. This work was supported by National Grand Fundamental Research 973 Program of China (Nos. 2006CB504700, 2007CB914304), National Science and Technology Major Project “Key New Drug Creation and Manufacturing Program”, China (Nos. 2009ZX09301-001, 2008ZX09305-007 and 2009ZX09501-033) and the Program of Shanghai Subject Chief Scientist (No. 09XD1405100).

Supplementary material

11306_2011_385_MOESM1_ESM.pdf (5.1 mb)
Supplementary material 1 (PDF 5217 kb)

References

  1. Azmi, J., Griffin, J. L., Shore, R. F., Holmes, E., & Nicholson, J. K. (2005). Chemometric analysis of biofluids following toxicant induced hepatotoxicity: A metabonomic approach to distinguish the effects of 1-naphthylisothiocyanate from its products. Xenobiotica, 35(8), 839–852.PubMedCrossRefGoogle Scholar
  2. Bairaktari, E., Seferiadis, K., Liamis, G., Psihogios, N., Tsolas, O., & Elisaf, M. (2002). Rhabdomyolysis-related renal tubular damage studied by proton nuclear magnetic resonance spectroscopy of urine. Clinical Chemistry, 48(7), 1106–1109.PubMedGoogle Scholar
  3. Beckonert, O., Keun, H. C., Ebbels, T. M., Bundy, J., Holmes, E., Lindon, J. C., et al. (2007). Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature Protocols, 2(11), 2692–2703.PubMedCrossRefGoogle Scholar
  4. Boudonck, K. J., Rose, D. J., Karoly, E. D., Lee, D. P., Lawton, K. A., & Lapinskas, P. J. (2009). Metabolomics for early detection of drug-induced kidney injury: Review of the current status. Bioanalysis, 1(9), 1645–1663.PubMedCrossRefGoogle Scholar
  5. Carrola, J., Rocha, C. M., Barros, A. S., Gil, A. M., Goodfellow, B. J., Carreira, I. M., et al. (2011). Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. Journal of Proteome Research, 10(1), 221–230.PubMedCrossRefGoogle Scholar
  6. Chen, M., Ni, Y., Duan, H., Qiu, Y., Guo, C., Jiao, Y., et al. (2008). Mass spectrometry-based metabolic profiling of rat urine associated with general toxicity induced by the multiglycoside of Tripterygium wilfordii Hook. f. Chemical Research in Toxicology, 21(2), 288–294.PubMedCrossRefGoogle Scholar
  7. Chen, X. Z., Shayakul, C., Berger, U. V., Tian, W., & Hediger, M. A. (1998). Characterization of a rat Na+-dicarboxylate cotransporter. Journal of Biological Chemistry, 273(33), 20972–20981.PubMedCrossRefGoogle Scholar
  8. Cloarec, O., Dumas, M. E., Trygg, J., Craig, A., Barton, R. H., Lindon, J. C., et al. (2005). Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies. Analytical Chemistry, 77(2), 517–526.PubMedCrossRefGoogle Scholar
  9. Delaney, J., Neville, W. A., Swain, A., Miles, A., Leonard, M. S., & Waterfield, C. J. (2004). Phenylacetylglycine, a putative biomarker of phospholipidosis: Its origins and relevance to phospholipid accumulation using amiodarone treated rats as a model. Biomarkers, 9(3), 271–290.PubMedCrossRefGoogle Scholar
  10. Ding, L., Hao, F., Shi, Z., Wang, Y., Zhang, H., Tang, H., et al. (2009). Systems biological responses to chronic perfluorododecanoic acid exposure by integrated metabonomic and transcriptomic studies. Journal of Proteome Research, 8(6), 2882–2891.PubMedCrossRefGoogle Scholar
  11. Fan, T. W. M., & Lane, A. N. (2008). Structure-based profiling of metabolites and isotopomers by NMR. Progress in Nuclear Magnetic Resonance Spectroscopy, 52(2–3), 69–117.CrossRefGoogle Scholar
  12. Ferguson, M. A., Vaidya, V. S., & Bonventre, J. V. (2008). Biomarkers of nephrotoxic acute kidney injury. Toxicology, 245(3), 182–193.PubMedCrossRefGoogle Scholar
  13. Gall, W. E., Beebe, K., Lawton, K. A., Adam, K. P., Mitchell, M. W., Nakhle, P. J., et al. (2010). Alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS One, 5(5), e10883.Google Scholar
  14. Griffin, J. L., Mann, C. J., Scott, J., Shoulders, C. C., & Nicholson, J. K. (2001). Choline containing metabolites during cell transfection: An insight into magnetic resonance spectroscopy detectable changes. FEBS Letters, 509(2), 263–266.PubMedCrossRefGoogle Scholar
  15. Gu, J., Weng, Y., Zhang, Q. Y., Cui, H., Behr, M., Wu, L., et al. (2003). Liver-specific deletion of the NADPH-cytochrome P450 reductase gene: Impact on plasma cholesterol homeostasis and the function and regulation of microsomal cytochrome P450 and heme oxygenase. Journal of Biological Chemistry, 278(28), 25895–25901.PubMedCrossRefGoogle Scholar
  16. Harper, A. E. (1989). Thoughts on the role of branched-chain alpha-keto acid dehydrogenase complex in nitrogen metabolism. Annals of the New York Academy of Sciences, 573, 267–273.PubMedCrossRefGoogle Scholar
  17. Henderson, C. J., Otto, D. M., Carrie, D., Magnuson, M. A., McLaren, A. W., Rosewell, I., et al. (2003). Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase. Journal of Biological Chemistry, 278(15), 13480–13486.PubMedCrossRefGoogle Scholar
  18. Hering-Smith, K. S., Gambala, C. T., & Hamm, L. L. (2000). Citrate and succinate transport in proximal tubule cells. American Journal of Physiology Renal Physiology, 278(3), F492–F498.PubMedGoogle Scholar
  19. James, T. J., Hughes, M. A., Cherry, G. W., & Taylor, R. P. (2003). Evidence of oxidative stress in chronic venous ulcers. Wound Repair and Regeneration, 11(3), 172–176.PubMedCrossRefGoogle Scholar
  20. Kand’ar, R., & Zakova, P. (2008). Allantoin as a marker of oxidative stress in human erythrocytes. Clinical Chemistry and Laboratory Medicine, 46(9), 1270–1274.PubMedGoogle Scholar
  21. Kay, R. E., & Entenman, C. (1961). Stimulation of taurocholic acid synthesis and biliary excretion of lipids. American Journal of Physiology, 200, 855–859.PubMedGoogle Scholar
  22. Kupchan, S. M., Court, W. A., Dailey, R. G., Jr., Gilmore, C. J., & Bryan, R. F. (1972). Triptolide and tripdiolide, novel antileukemic diterpenoid triepoxides from Tripterygium wilfordii. Journal of the American Chemical Society, 94(20), 7194–7195.PubMedCrossRefGoogle Scholar
  23. Kutlu, S., Colakoglu, N., Halifeoglu, I., Sandal, S., Seyran, A. D., Aydin, M., et al. (2007). Comparative evaluation of hepatotoxic and nephrotoxic effects of aroclors 1221 and 1254 in female rats. Cell Biochemistry and Function, 25(2), 167–172.PubMedCrossRefGoogle Scholar
  24. Kwon, E. D., Zablocki, K., Jung, K. Y., Peters, E. M., Garcia-Perez, A., & Burg, M. B. (1995). Osmoregulation of GPC:choline phosphodiesterase in MDCK cells: different effects of urea and NaCl. American Journal of Physiology, 269((1 Pt 1)), C35–C41.PubMedGoogle Scholar
  25. Laerke, H. N., Jensen, B. B., & Hojsgaard, S. (2000). In vitro fermentation pattern of D-tagatose is affected by adaptation of the microbiota from the gastrointestinal tract of pigs. Journal of Nutrition, 130(7), 1772–1779.PubMedGoogle Scholar
  26. Lanza, I. R., Zhang, S., Ward, L. E., Karakelides, H., Raftery, D., & Nair, K. S. (2010). Quantitative metabolomics by H-NMR and LC-MS/MS confirms altered metabolic pathways in diabetes. PLoS One, 5(5), e10538.PubMedCrossRefGoogle Scholar
  27. Li, W., Liu, Y., He, Y. Q., Zhang, J. W., Gao, Y., Ge, G. B., et al. (2008). Characterization of triptolide hydroxylation by cytochrome P450 in human and rat liver microsomes. Xenobiotica, 38(12), 1551–1565.PubMedCrossRefGoogle Scholar
  28. Lin, N., Liu, C. F., Xiao, C., Jia, H. W., Imada, K., Wu, H., et al. (2007). Triptolide, a diterpenoid triepoxide, suppresses inflammation and cartilage destruction in collagen-induced arthritis mice. Biochemical Pharmacology, 73(1), 136–146.PubMedCrossRefGoogle Scholar
  29. Liu, M. X., Dong, J., Yang, Y. J., Yang, X. L., & Xu, H. B. (2008). Effect of poly(d, l-lactic acid) nanoparticles as triptolide carrier on abating rats renal toxicity by NMR-based metabolic analysis. Journal of Nanoscience and Nanotechnology, 8(7), 3493–3499.PubMedCrossRefGoogle Scholar
  30. Macfarlane, S., & Macfarlane, G. T. (2003). Regulation of short-chain fatty acid production. Proceedings of the Nutrition Society, 62(1), 67–72.PubMedCrossRefGoogle Scholar
  31. Massey, K. A., Blakeslee, C. H., & Pitkow, H. S. (1998). A review of physiological and metabolic effects of essential amino acids. Amino Acids, 14(4), 271–300.PubMedCrossRefGoogle Scholar
  32. Mei, Z., Li, X., Wu, Q., Hu, S., & Yang, X. (2005). The research on the anti-inflammatory activity and hepatotoxicity of triptolide-loaded solid lipid nanoparticle. Pharmacological Research, 51(4), 345–351.PubMedCrossRefGoogle Scholar
  33. Milhorat, A. T. (1953). Creatine and creatinine metabolism and diseases of the neuromuscular system. Research Publications—Association for Research in Nervous and Mental Disease, 32, 400–421.PubMedGoogle Scholar
  34. Musfeld, C., Biollaz, J., Belaz, N., Kesselring, U. W., & Decosterd, L. A. (2001). Validation of an HPLC method for the determination of urinary and plasma levels of N1-methylnicotinamide, an endogenous marker of renal cationic transport and plasma flow. Journal of Pharmaceutical and Biomedical Analysis, 24(3), 391–404.PubMedCrossRefGoogle Scholar
  35. Ni, B., Jiang, Z. Z., Huang, X., Xu, F. G., Zhang, R., Zhang, Z. J., et al. (2008). Male reproductive toxicity and toxicokinetics of triptolide in rats. Arzneimittel-Forschung-Drug Research, 58(12), 673–680.Google Scholar
  36. Okuda, S., Yamada, T., Hamajima, M., Itoh, M., Katayama, T., Bork, P., et al. (2008). KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Research, 36(Web Server issue), W423–W426.PubMedCrossRefGoogle Scholar
  37. Orlowski, M., & Wilk, S. (1978). Synthesis of ophthalmic acid in liver and kidney in vivo. Biochemical Journal, 170(2), 415–419.PubMedGoogle Scholar
  38. Powers, R. (2009). NMR metabolomics and drug discovery. Magnetic Resonance in Chemistry, 47(Suppl 1), S2–S11.PubMedCrossRefGoogle Scholar
  39. Prince, P. S. M., & Kannan, N. K. (2006). Protective effect of rutin on lipids, lipoproteins, lipid metabolizing enzymes and glycoproteins in streptozotocin-induced diabetic rats. Journal of Pharmacy and Pharmacology, 58(10), 1373–1383.CrossRefGoogle Scholar
  40. Robertson, D. G., Reily, M. D., Sigler, R. E., Wells, D. F., Paterson, D. A., & Braden, T. K. (2000). Metabonomics: Evaluation of nuclear magnetic resonance (NMR) and pattern recognition technology for rapid in vivo screening of liver and kidney toxicants. Toxicological Sciences, 57(2), 326–337.PubMedCrossRefGoogle Scholar
  41. Sakai, T., Yamamoto, K., Yokota, H., Hakozaki-Usui, K., Hino, F., & Kato, I. (1990). Rapid, simple enzymatic assay of free L-fucose in serum and urine, and its use as a marker for cancer, cirrhosis, and gastric ulcers. Clinical Chemistry, 36(3), 474–476.PubMedGoogle Scholar
  42. Sands, C. J., Coen, M., Maher, A. D., Ebbels, T. M., Holmes, E., Lindon, J. C., et al. (2009). Statistical total correlation spectroscopy editing of 1H NMR spectra of biofluids: Application to drug metabolite profile identification and enhanced information recovery. Analytical Chemistry, 81(15), 6458–6466.PubMedCrossRefGoogle Scholar
  43. Soga, T., Baran, R., Suematsu, M., Ueno, Y., Ikeda, S., Sakurakawa, T., et al. (2006). Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. Journal of Biological Chemistry, 281(24), 16768–16776.PubMedCrossRefGoogle Scholar
  44. Solanky, K. S., Bailey, N. J., Beckwith-Hall, B. M., Davis, A., Bingham, S., Holmes, E., et al. (2003). Application of biofluid 1H nuclear magnetic resonance-based metabonomic techniques for the analysis of the biochemical effects of dietary isoflavones on human plasma profile. Analytical Biochemistry, 323(2), 197–204.PubMedCrossRefGoogle Scholar
  45. Stipanuk, M. H. (2004). Sulfur amino acid metabolism: Pathways for production and removal of homocysteine and cysteine. Annual Review of Nutrition, 24, 539–577.PubMedCrossRefGoogle Scholar
  46. Sturgess, J. M., Minaker, E., Mitranic, M. M., & Moscarello, M. A. (1973). The incorporation of l-fucose into glycoproteins in the Golgi apparatus of rat liver and in serum. Biochimica et Biophysica Acta, 320(1), 123–132.PubMedCrossRefGoogle Scholar
  47. Tang, H. R., Wang, Y. L., Nicholson, J. K., & Lindon, J. C. (2004). Use of relaxation-edited one-dimensional and two dimensional nuclear magnetic resonance spectroscopy to improve detection of small metabolites in blood plasma. Analytical Biochemistry, 325(2), 260–272.PubMedCrossRefGoogle Scholar
  48. Waldram, A., Holmes, E., Wang, Y., Rantalainen, M., Wilson, I. D., Tuohy, K. M., et al. (2009). Top-down systems biology modeling of host metabotype-microbiome associations in obese rodents. Journal of Proteome Research, 8(5), 2361–2375.PubMedCrossRefGoogle Scholar
  49. Wang, Y., Holmes, E., Nicholson, J. K., Cloarec, O., Chollet, J., Tanner, M., et al. (2004). Metabonomic investigations in mice infected with Schistosoma mansoni: an approach for biomarker identification. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12676–12681.PubMedCrossRefGoogle Scholar
  50. Waterfield, C. J., Turton, J. A., Scales, M. D., & Timbrell, J. A. (1991). Taurine, a possible urinary marker of liver damage: A study of taurine excretion in carbon tetrachloride-treated rats. Archives of Toxicology, 65(7), 548–555.PubMedCrossRefGoogle Scholar
  51. Waterfield, C. J., Turton, J. A., Scales, M. D. C., & Timbrell, J. A. (1993). Investigations into the effects of various hepatotoxic compounds on urinary and liver taurine levels in rats. Archives of Toxicology, 67(4), 244–254.PubMedCrossRefGoogle Scholar
  52. Wei, L., Liao, P., Wu, H., Li, X., Pei, F., Li, W., et al. (2009). Metabolic profiling studies on the toxicological effects of realgar in rats by (1)H NMR spectroscopy. Toxicology and Applied Pharmacology, 234(3), 314–325.PubMedCrossRefGoogle Scholar
  53. Weljie, A. M., Dowlatabadi, R., Miller, B. J., Vogel, H. J., & Jirik, F. R. (2007). An inflammatory arthritis-associated metabolite biomarker pattern revealed by 1H NMR spectroscopy. Journal of Proteome Research, 6(9), 3456–3464.PubMedCrossRefGoogle Scholar
  54. Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. C., Young, N., et al. (2007). HMDB: the human metabolome database. Nucleic Acids Research, 35, D521–D526.PubMedCrossRefGoogle Scholar
  55. Xia, S. G., Liu, H. L., Zhu, H., Zhou, Z. M., Zhang, X., & Liu, M. L. (2009). NMR-based metabonomic study on rat’s urinary metabolic response to dosage of triptolide. Chinese Journal of Chemistry, 27(4), 751–758.CrossRefGoogle Scholar
  56. Xiao, Y., Ge, M., Xue, X., Wang, C., Wang, H., Wu, X., et al. (2008). Hepatic cytochrome P450s metabolize aristolochic acid and reduce its kidney toxicity. Kidney International, 73(11), 1231–1239.PubMedCrossRefGoogle Scholar
  57. Xue, X., Gong, L., Qi, X., Wu, Y., Xing, G., Yao, J., et al. (2011). Knockout of hepatic P450 reductase aggravates triptolide-induced toxicity. Toxicology Letters, 205(1), 47–54.PubMedCrossRefGoogle Scholar
  58. Yamauchi, M., Kimura, K., Maezawa, Y., Ohata, M., Mizuhara, Y., Hirakawa, J., et al. (1993). Urinary level of l-fucose as a marker of alcoholic liver-disease. Alcoholism-Clinical and Experimental Research, 17(2), 268–271.CrossRefGoogle Scholar
  59. Yardim-Akaydin, S., Sepici, A., Ozkan, Y., Torun, M., Simsek, B., & Sepici, V. (2004). Oxidation of uric acid in rheumatoid arthritis: Is allantoin a marker of oxidative stress? Free Radical Research, 38(6), 623–628.PubMedCrossRefGoogle Scholar
  60. Ye, X., Li, W., Yan, Y., Mao, C., Cai, R., Xu, H., et al. (2010). Effects of cytochrome P4503A inducer dexamethasone on the metabolism and toxicity of triptolide in rat. Toxicology Letters, 192(2), 212–220.PubMedCrossRefGoogle Scholar
  61. Zablocki, K., Miller, S. P., Garcia-Perez, A., & Burg, M. B. (1991). Accumulation of glycerophosphocholine (GPC) by renal cells: Osmotic regulation of GPC:choline phosphodiesterase. Proceedings of the National Academy of Sciences of the United States of America, 88(17), 7820–7824.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Xia Liu
    • 2
  • Xiang Xue
    • 1
  • Likun Gong
    • 1
  • Xinming Qi
    • 1
  • Yuanfeng Wu
    • 1
  • Guozhen Xing
    • 1
  • Yang Luan
    • 1
  • Ying Xiao
    • 1
  • Xiongfei Wu
    • 1
  • Yan Li
    • 1
  • Min Chen
    • 1
  • Lingling Miao
    • 1
  • Jun Yao
    • 1
  • Jun Gu
    • 4
  • Donghai Lin
    • 3
    Email author
  • Jin Ren
    • 1
    Email author
  1. 1.Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
  2. 2.Biomolecular NMR Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
  3. 3.The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen UniversityXiamenChina
  4. 4.Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at AlbanyAlbanyUSA

Personalised recommendations