, Volume 8, Issue 4, pp 598–613 | Cite as

Lipid profiling of the model temperate grass, Brachypodium distachyon

  • M. Nurul Islam
  • John P. Chambers
  • Carl K.-Y. Ng
Original Article


Lipids are essential metabolites in cells and they fulfil a variety of functions, including structural components of cellular membranes, energy storage, cell signalling, and membrane trafficking. In plants, changes in lipid composition have been observed in diverse responses ranging from abiotic and biotic stress to organogenesis. Knowledge of the lipid composition is an important first step towards understanding the function of lipids in any given biological system. As Brachypodium distachyon is emerging as the model species for temperate grass research, it is therefore fundamentally important to gain insights of its lipid composition. We used HPLC-coupled with tandem mass spectrometry to profile and quantify levels of sphingolipids and glycerophospholipids in shoots and undifferentiated cells in suspension cultures of B. distachyon. A total of 123 lipids belonging to 10 classes were identified and quantified. Our results showed that there are differences in lipid profiles and levels of individual lipid species between shoots and undifferentiated cells in suspension cultures. Additionally, we showed that 4-sphingenine (d18:1Δ4) is the main unsaturated dihydroxy-long chain base (LCB) in B. distachyon, and we were unable to detect d18:1Δ8, which is the main unsaturated dihydroxy-LCB in the model dicotyledonous species, Arabidopsis thaliana. This work serves as the first step towards a comprehensive characterization of the B. distachyon lipidome that will complement future biochemical studies.


Brachypodium distachyon Lipidome Glycerophospholipids Sphingolipids LC–MS/MS 

Supplementary material

11306_2011_352_MOESM1_ESM.doc (50 kb)
Supplementary material 1 (DOC 50 kb)


  1. Allwood, J. W., Ellis, D. I., Heald, J. K., Goodacre, R., & Mur, L. A. J. (2006). Metabolomic approaches reveal that phosphatidic acid and phosphatidyl glycerol phospholipids are major discriminatory non-polar metabolites in responses by Brachypodium distachyon to challenge by Magnaporthe grisea. Plant Journal, 46, 351–368.PubMedCrossRefGoogle Scholar
  2. Alves, S. C., Worland, B., Thole, V., Snape, J. W., Bevan, M. W., & Vain, P. (2009). A protocol for Agrobacterium-mediated transformation of Brachypodium distachyon community standard line Bd21. Nature Protocols, 4, 638–649.PubMedCrossRefGoogle Scholar
  3. Bamba, T., Shimonishi, N., Matsubara, A., Hirata, K., Nakazawa, Y., Kobayashi, A., et al. (2008). High throughput and exhaustive analysis of diverse lipids by using supercritical fluid chromatography-mass spectrometry for metabolomics. Journal of Bioscience and Bioengineering, 105, 460–469.PubMedCrossRefGoogle Scholar
  4. Bartke, N., Fischbeck, A., & Humpf, H.-U. (2006). Analysis of sphingolipids in potatoes (Solanum tuberosum L.) and sweet potatoes (Ipomoea batatas (L.) Lam.) by reversed phase high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Molecular Nutrition & Food Research, 50, 1201–1211.CrossRefGoogle Scholar
  5. Bossolini, E., Wickler, T., Knobel, P. A., & Keller, B. (2007). Comparison of orthologoous loci from small grass genome Brachypodium and rice: Implications for wheat genomics and grass genome annotation. Plant Journal, 49, 704–717.PubMedCrossRefGoogle Scholar
  6. Burgos, A., Szymanski, J., Seiwert, B., Degenkolbe, T., Hannah, M. A., Giavalisco, P., & Willmitzer, L. (2011). Analysis of short-term changes in the Arabidopsis thaliana glycerolipidome in response to temperature and light. Plant Journal. doi:10.1111/j.1365-313X.2011.04531.x.
  7. Coursol, S. C., Fan, L.-M., Le Stunff, H., Spiegel, S., Gilroy, S., & Assmann, S. M. (2003). Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature, 423, 651–654.PubMedCrossRefGoogle Scholar
  8. Devaiah, S. P., Roth, M. R., Baughman, E., Li, M., Tamura, P., Jeannotte, R., et al. (2006). Quantitative profiling of polar glycerolipid species and the role of phospholipase Dα1 in defining the lipid species in Arabidopsis tissues. Phytochemistry, 67, 1907–1924.PubMedCrossRefGoogle Scholar
  9. Draper, J., Mur, L. A. J., Jenkins, G., Ghosh-Biswas, G. C., Bablak, P., Hasterok, R., et al. (2001). Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiology, 127, 1539–1555.PubMedCrossRefGoogle Scholar
  10. Dunn, T. M., Lynch, D. V., Michaelson, L. V., & Napier, J. A. (2004). A post-genomic approach to understanding sphingolipid metabolism in Arabidopsis thaliana. Annals of Botany, 93, 483–497.PubMedCrossRefGoogle Scholar
  11. Fahy, E., Subramaniam, S., Brown, H., Glass, C., Merrill, J. A., Murphy, R., et al. (2005). A comprehensive classification system for lipids. Journal of Lipid Research, 46, 839–861.PubMedCrossRefGoogle Scholar
  12. Fahy, E., Subramaniam, S., Murphy, R., Nishijima, M., Raetz, C., Shimizu, T., et al. (2009). Update of the LIPID MAPS comprehensive classification system for lipids. Journal of Lipid Research, 50, S9–S14.PubMedCrossRefGoogle Scholar
  13. Fujino, Y., Ohnishi, M., & Ito, S. (1985). Molecular species of ceramide and mono-, di-, tri-, and tetraglycosylceramide in bran and endosperm of rice grains. Agricultural and Biological Chemistry, 49, 2753–2762.CrossRefGoogle Scholar
  14. Gao, F., Tian, X., Wen, D., Liao, J., Wang, T., & Liu, H. (2006). Analysis of phospholipid species in rat peritoneal surface layer by liquid chromatography/electrospray ionization ion-trap mass spectrometry. Biochimica et Biophysica Acta, 1761, 667–676.PubMedCrossRefGoogle Scholar
  15. Garvin, D. F. (2007a). Brachypodium: A new monocot model plant system emerges. Journal of the Science of Food and Agriculture, 87, 1177–1179.CrossRefGoogle Scholar
  16. Garvin, D. F. (2007b). Brachypodium distachyon: A new model system for structural and functional analysis of grass genomes. In R. K. Varshney & R. M. Koebner (Eds.), Model plants & crop improvement (pp. 109–123). Boca Raton: Taylor & Francis Press.Google Scholar
  17. Han, P. P., Zhou, J., & Yuan, Y. J. (2009). Analysis of phospholipids, sterols, and fatty acids in Taxus chinensis var. mairei cells in response to shear stress. Biotechnology and Applied Biochemistry, 54, 105–112.PubMedCrossRefGoogle Scholar
  18. Hetherington, A. M., & Drøbak, B. K. (1992). Inositol-containing lipids in higher plants. Progress in Lipid Research, 31, 53–63.PubMedCrossRefGoogle Scholar
  19. Horn, P. J., Ledbetter, N. R., James, C. N., Hoffman, W. D., Case, C. R., Verbeck, G. F., & Chapman, K. D. (2011). Visualization of lipid droplet composition by direct organelle mass spectrometry. Journal of Biological Chemistry, 286, 3298–3306.PubMedCrossRefGoogle Scholar
  20. Imai, H., Ohnishi, M., Hotsubo, K., Kojima, M., & Ito, S. (1997). Sphingoid base composition of cerebrosides from plant leaves. Bioscience, Biotechnology, and Biochemistry, 61, 351–353.CrossRefGoogle Scholar
  21. Kawaguchi, M., Imai, H., Naoe, M., Yasui, Y., & Ohnishi, M. (2000). Cerebrosides in grapevine leaves: Distinct composition of sphingoid bases among the grapevine species having different tolerances to freezing temperature. Bioscience, Biotechnology, and Biochemistry, 64, 1271–1273.PubMedCrossRefGoogle Scholar
  22. Khalil, M. B., Hou, W., Zhou, H., Elisma, F., Swayne, L. A., Blanchard, A. P., et al. (2010). Lipidomics era: Accomplishments and challenges. Mass Spectrometry Reviews, 29, 877–929.CrossRefGoogle Scholar
  23. Larson, T. R., & Graham, I. A. (2006). Targeted profiling of fatty acids and related metabolites. In K. Saito, R. A. Dixon, & L. Willmitzer (Eds.), Plant metabolomics (pp. 211–228). Berlin: Springer.CrossRefGoogle Scholar
  24. Li, J., Cui, Z., Zhao, S., & Sidman, R. L. (2007). Unique glycerophospholipid signature in retinal stem cells correlates with enzymatic functions of diverse long-chain acyl-CoA synthetases. Stem Cells, 25, 2864–2873.PubMedCrossRefGoogle Scholar
  25. Lynch, D. V., Chen, M., & Cahoon, E. B. (2009). Lipid signalling in Arabidopsis: No sphingosine? No problem!. Trends in Plant Science, 14, 463–466.PubMedCrossRefGoogle Scholar
  26. Lynch, D. V., & Dunn, T. M. (2004). An introduction to plant sphingolipids and a review of recent advances in understanding their metabolism and function. New Phytologist, 161, 677–702.CrossRefGoogle Scholar
  27. Markham, J. E., & Jaworski, J. G. (2007). Rapid measurement of sphingolipids from Arabidopsis thaliana by reverse-phase high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 21, 1304–1314.PubMedCrossRefGoogle Scholar
  28. Markham, J. E., Jia, L., Cahoon, E. B., & Jaworski, J. G. (2006). Separation and identification of major plant sphingolipid classes from leaves. Journal of Biological Chemistry, 281, 22684–22694.PubMedCrossRefGoogle Scholar
  29. Merrill, A. H., Jr., Caligan, T. B., Wang, E., Peters, K., & Ou, J. (2000). Analysis of sphingoid bases and sphingoid base 1-phosphates by high performance liquid chromatography. Methods in Enzymology, 312, 3–9.PubMedCrossRefGoogle Scholar
  30. Michaelson, L. V., Zäuner, S., Markham, J. E. M., Haslam, R. P., Desikan, R., Mugford, S., et al. (2009). Functional characterization of a higher plant sphingolipid Δ4-desaturase: Defining the role of sphingosine and sphingosine-1-phosphate in Arabidopsis. Plant Physiology, 149, 487–498.PubMedCrossRefGoogle Scholar
  31. Minamioka, H., & Imai, H. (2009). Sphingoid long-chain base composition of glucosylceramides in Fabaceae: A phylogenetic interpretation of Fabeae. Journal of Plant Research, 122, 415–419.PubMedCrossRefGoogle Scholar
  32. Ng, C. K.-Y., Carr, K., McAinsh, M. R., Powell, B., & Hetherington, A. M. (2001). Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature, 410, 596–599.PubMedCrossRefGoogle Scholar
  33. Ohnishi, M., Ito, S., & Fujino, Y. (1985). Structural characterization of sphingolipids in leafy rice stems. Agricultural and Biological Chemistry, 49, 3327–3329.CrossRefGoogle Scholar
  34. Okazaki, Y., Kamide, Y., Yokota, M., & Saito, K. (2011) Plant lipidomics based on hydrophilic interaction chromatography coupled to ion trap time-of-flight mass spectrometry. Metabolomics. doi:10.1007/s/1306-011-0318-z.
  35. Opanowicz, M., Vain, P., Draper, J., Parker, D., & Doonan, J. H. (2008). Brachypodium distachyon: Making hay with wild grass. Trends in Plant Science, 13, 172–177.PubMedCrossRefGoogle Scholar
  36. Păcurar, D. I., Thordal-Christensen, H., Nielsen, K. K., & Lenk, I. (2007). A high-throughput Agrobacterium-mediated transformation system for the grass model species Brachypodium distachyon L. Transgenic Research, 17, 965–975.PubMedCrossRefGoogle Scholar
  37. Park, H., Haynes, C. A., Nairn, A. V., Kulik, M., Dalton, S., Moremen, K., et al. (2010). Transcript profiling and lipidomic analysis of ceramide subspecies in mouse embryogenic stem cells and embryoid bodies. Journal of Lipid Research, 51, 480–489.PubMedCrossRefGoogle Scholar
  38. Pata, M. O., Hannun, Y. A., & Ng, C. K.-Y. (2010). Plant sphingolipids: Decoding the enigma of the Sphinx. New Phytologist, 185, 611–630.PubMedCrossRefGoogle Scholar
  39. Spassieva, S., & Hille, J. (2003). Plant sphingolipids today—are they still enigmatic? Plant Biology, 5, 125–136.CrossRefGoogle Scholar
  40. Sperling, P., & Heinz, E. (2003). Plant sphingolipids: Structural diversity, biosynthesis, first genes and functions. Biochimica et Biophysica Acta, 1632, 1–15.PubMedCrossRefGoogle Scholar
  41. Takakuwa, N., Saito, K., Ohnishi, M., & Oda, Y. (2005). Determination of glucosylceramide contents in crop tissues and by-products from their processing. Bioresource Technology, 96, 1089–1092.PubMedCrossRefGoogle Scholar
  42. The International Brachypodium Initiative. (2010). Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 463, 763–768.CrossRefGoogle Scholar
  43. Thole, V., Alves, S. C., Worland, B., Bevan, M. W., & Vain, P. (2009). A protocol for efficiently retrieving and characterizing flanking sequence tags (FSTs) in Brachypodium distachyon T-DNA insertional mutants. Nature Protocols, 4, 650–661.PubMedCrossRefGoogle Scholar
  44. Uemura, M., & Steponkus, P. L. (1994). A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiology, 104, 479–496.PubMedGoogle Scholar
  45. Vain, P., Worland, B., Thile, V., McKenzie, N., Alves, S. C., Opanowicz, M., et al. (2008). Agrobacterium-mediated transformation of the temperate grass Brachypodium distachyon (genotype Bd21) for T-DNA insertional mutagenesis. Plant Biotechnology Journal, 6, 236–245.PubMedCrossRefGoogle Scholar
  46. Vogel, J. P., Garvin, D. F., Leong, O. M., & Hayden, D. M. (2006a). Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon. Plant Cell, Tissue and Organ Culture, 84, 199–211.CrossRefGoogle Scholar
  47. Vogel, J. P., Gu, Y. Q., Twigg, P., Lazo, G. R., Laudencia-Chingcuanco, D., Hayden, D. M., et al. (2006b). EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon. Theoretical and Applied Genetics, 113, 186–195.PubMedCrossRefGoogle Scholar
  48. Vogel, J. P., & Hill, T. (2007). High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Reports, 27, 471–478.PubMedCrossRefGoogle Scholar
  49. Wang, L., Wang, T., & Fehr, W. R. (2006). HPLC quantification of sphingolipids in soybeans with modified palmitate content. Journal of Agricultural and Food Chemistry, 54, 7422–7428.PubMedCrossRefGoogle Scholar
  50. Welti, R., Li, W., Li, M., Sang, Y., Biesiada, H., Zhou, H.-E., et al. (2002). Profiling membrane lipids in plant stress responses. Role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. Journal Biological Chemistry, 277, 31994–32002.CrossRefGoogle Scholar
  51. Welti, R., Shah, J., Li, W., Li, M., Chen, J., Burke, J. J., et al. (2007). Plant lipidomics: Discerning biological function by profiling plant complex lipids using mass spectrometry. Frontiers in Bioscience, 12, 2494–2506.PubMedCrossRefGoogle Scholar
  52. Yamada, K., Lim, J., Dale, J. M., Chen, H., Shinn, P., Palm, C. J., et al. (2003). Empirical analysis of transcriptional activity in the Arabidopsis genome. Science, 302, 843–846.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • M. Nurul Islam
    • 1
  • John P. Chambers
    • 1
  • Carl K.-Y. Ng
    • 1
  1. 1.School of Biology and Environmental ScienceUniversity College DublinDublin 4Ireland

Personalised recommendations