, Volume 9, Supplement 1, pp 188–202 | Cite as

Effect of a nutraceutical treatment on diabetic rats with targeted and CE-MS non-targeted approaches

  • Joanna Godzien
  • Diana García-Martínez
  • Paz Martinez-Alcazar
  • Francisco J. Ruperez
  • Coral BarbasEmail author
Original Article


Despite the introduction of hypoglycemic drugs, diabetes and related complications continue being a major medical problem. Diabetes long-term complications are not only related to the genesis of free radicals due to oxidation of glucose and to the non-enzymatic and progressive glycation of proteins but also to the endothelial dysfunction secondary to persistent hyperglycemia that causes cardiovascular complications. In an experimental model of streptozotocin (STZ) diabetic rats, the effect of five doses of an extract containing both an antioxidant (Rosmarinus officinalis) and folic acid were intragastrically administrated. Urine fingerprints of control and diabetic rats, both with and without treatment, were obtained by capillary electrophoresis with mass spectrometry (CE-TOF-MS). In order to have further biochemical knowledge of the effect, after treatment, rats were killed and plasma glucose, triglycerides, cholesterol, total protein, urea were analysed. Vitamin E in plasma and liver was also measured. Among the changes observed, the reduction in diuresis and plasma triglycerides, together with reduction in 2-aminobutyric, leucine/isoleucine, and dimethylglycine have shown that a short term nutraceutical treatment was able to reduce some of the complications in the STZ diabetic rats. In addition, this CE-MS metabolomic approach has permitted to identify metabolites related to metabolism of arginine, histidine, lysine and glycine in urine that can help monitoring the efficiency of treatments against the deleterious effects of type 1 diabetes.


Metabolomics Urine fingerprinting Antioxidants Rosemary Folate Streptozotocin 



Joanna Godzien acknowledges her fellowship to EADS-CASA. The authors acknowledge the rosemary extract to Prof. Ibañez, Prof. Cifuentes and Prof. Señoráns (CSIC-UAM) and the funding to Comunidad de Madrid, S-GEN-0247-2006 and Ministry of Science and Technology (MCIT) CTQ2008-03779. Angeles Lopez-Gonzalvez gave support with injection of standards in CE-MS.


  1. Al-Dehaimi, A. W., Blumsohn, A., & Eastell, R. (1999). Serum galactosyl hydroxylysine as a biochemical marker of bone resorption. Clinical Chemistry, 45, 676–681.PubMedGoogle Scholar
  2. Almdal, T. P., & Vilstrup, H. (1987). Effects of streptozotocin-induced diabetes and diet on nitrogen loss from organs and on the capacity of urea synthesis in rats. Diabetologia, 30, 952–956.PubMedCrossRefGoogle Scholar
  3. Baslow, M. H. (1997). A review of phylogenetic and metabolic relationships between the acylamino acids, N-acetyl-l-aspartic acid and N-acetyl-l-histidine, in the vertebrate nervous system. Journal of Neurochemistry, 68, 1335–1344.PubMedCrossRefGoogle Scholar
  4. Cavero, S., Jaime, L., Martín-Álvarez, P., & Señoráns, J. F. (2005). In vitro antioxidant analysis of supercritical fluid extracts from rosemary (Rosmarinus officinalis L.). European Food Research and Technology, 221, 478–486.CrossRefGoogle Scholar
  5. Cohen, M. P., & Khalifa, A. (1977). Renal glomerular collagen synthesis in streptozotocin diabetes. Reversal of increased basement membrane synthesis with insulin therapy. Biochimica et Biophysica Acta, 500, 395–404.PubMedCrossRefGoogle Scholar
  6. Connor, M. J., Pheasant, A. E., & Blair, J. A. (1979). The identification of p-acetamidobenzoate as a folate degradation product in rat urine. Biochemical Journal, 178, 795–797.PubMedGoogle Scholar
  7. Das, U. N. (2003). Folic acid says NO to vascular diseases. Nutrition, 19, 686–692.PubMedCrossRefGoogle Scholar
  8. De Deyn, P., Marescau, B., Lornoy, W., Becaus, I., & Lowenthal, A. (1986). Guanidino compounds in uraemic dialysed patients. Clinica Chimica Acta, 157, 143–150.CrossRefGoogle Scholar
  9. De Deyn, P. P., Robitaille, P., Vanasse, M., Qureshi, I. A., & Marescau, B. (1995). Serum guanidino compound levels in uremic pediatric patients treated with hemodialysis or continuous cycle peritoneal dialysis. Correlations between nerve conduction velocities and altered guanidino compound concentrations. Nephron, 69, 411–417.PubMedCrossRefGoogle Scholar
  10. Fukagawa, N. K., Minaker, K. L., Rowe, J. W., Goodman, M. N., Matthews, D. E., Bier, D. M., et al. (1985). Insulin-mediated reduction of whole body protein breakdown. Dose-response effects on leucine metabolism in postabsorptive men. Journal of Clinical Investigation, 76, 2306–2311.PubMedCrossRefGoogle Scholar
  11. Garcia-Martinez, D., Ruperez, F. J., Ugarte, P., & Barbas, C. (2007). Tocopherol fate in plasma and liver of streptozotocin-treated rats that orally received antioxidants and Spirulina extracts. International Journal for Vitamin and Nutrition Research, 77, 263–271.PubMedCrossRefGoogle Scholar
  12. Gika, H. G., Macpherson, E., Theodoridis, G. A., & Wilson, I. D. (2008). Evaluation of the repeatability of ultra-performance liquid chromatography-TOF-MS for global metabolic profiling of human urine samples. Journal of Chromatography B, 871, 299–305.CrossRefGoogle Scholar
  13. Godzien, J., Ciborowski, M., Angulo, S., Ruperez, F. J., Martinez, M. P., Senorans, F. J., et al. (2011). Metabolomic approach with LC-QTOF to study the effect of a nutraceutical treatment on urine of diabetic rats. Journal of Proteome Research, 10, 837–844.PubMedCrossRefGoogle Scholar
  14. Grove, J., & Henderson, L. M. (1968). The metabolism of d- and l-lysine in the intact rat, perfused liver and liver mitochondria. Biochimica et Biophysica Acta, 165, 113–120.PubMedCrossRefGoogle Scholar
  15. Haft, D. E., & Reddi, A. S. (1979). Glucosyltransferase activity in kidney fractions of normal and streptozotocin-diabetic rats. Biochimica et Biophysica Acta, 584, 1–10.PubMedCrossRefGoogle Scholar
  16. Herman, M. A., She, P., Peroni, O. D., Lynch, C. J., & Kahn, B. B. (2010). Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. Journal of Chemical Biology, 285, 11348–11356.CrossRefGoogle Scholar
  17. Herrero, M., Plaza, M., Cifuentes, A., & Ibáñez, E. (2010). Green processes for the extraction of bioactives from Rosemary: Chemical and functional characterization via ultra-performance liquid chromatography-tandem mass spectrometry and in vitro assays. Journal of Chromatography A, 1217, 2512–2520.PubMedCrossRefGoogle Scholar
  18. Imamura, I., Maeyama, K., Wada, H., & Watanabe, T. (1984). Determination of imidazole acetic acid and its conjugate(s) levels in urine, serum and tissues of rats: Studies on changes in their levels under various conditions. British Journal of Pharmacology, 82, 701–707.PubMedCrossRefGoogle Scholar
  19. Karachalias, N., Babaei-Jadidi, R., Rabbani, N., & Thornalley, P. J. (2010). Increased protein damage in renal glomeruli, retina, nerve, plasma and urine and its prevention by thiamine and benfotiamine therapy in a rat model of diabetes. Diabetologia, 53, 1506–1516.PubMedCrossRefGoogle Scholar
  20. Kern, T. S., & Engerman, R. L. (1983). Abnormal amino acid concentrations in plasma and urine of experimentally diabetic dogs. Research in Experimental Medicine, 182, 185–192.PubMedCrossRefGoogle Scholar
  21. Knill, T., Schuster, J., Reichelt, M., Gershenzon, J., & Binder, S. (2008). Arabidopsis branched-chain aminotransferase 3 functions in both amino acid and glucosinolate biosynthesis. Plant Physiology, 146, 1028–1039.PubMedCrossRefGoogle Scholar
  22. Kohda, Y., Shirakawa, H., Yamane, K., Otsuka, K., Kono, T., Terasaki, F., et al. (2008). Prevention of incipient diabetic cardiomyopathy by high-dose thiamine. Journal of Toxicological Sciences, 33, 459–472.PubMedCrossRefGoogle Scholar
  23. Krebs, H. A., Hems, R., & Tyler, B. (1976). The regulation of folate and methionine metabolism. Biochemical Journal, 158, 341–353.PubMedGoogle Scholar
  24. Kroymann, J., Textor, S., Tokuhisa, J. G., Falk, K. L., Bartram, S., Gershenzon, J., et al. (2001). A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiology, 127, 1077–1088.PubMedCrossRefGoogle Scholar
  25. Lee, R., Ptolemy, A. S., Niewczas, L., & Britz-Mckibbin, P. (2007). Integrative metabolomics for characterizing unknown low-abundance metabolites by capillary electrophoresis-mass spectrometry with computer simulations. Analytical Chemistry, 79, 403–415.PubMedCrossRefGoogle Scholar
  26. Leiper, J., & Vallance, P. (1999). Biological significance of endogenous methylarginines that inhibit nitric oxide synthases. Cardiovascular Research, 43, 542–548.PubMedCrossRefGoogle Scholar
  27. Lombardo, Y. B., Serdikoff, C., Thamotharan, M., Paul, H. S., & Adibi, S. A. (1999). Inverse alterations of BCKA dehydrogenase activity in cardiac and skeletal muscles of diabetic rats. American Journal of Physiology, 277, E685–E692.PubMedGoogle Scholar
  28. Macfarlane, G. T., Cummings, J. H., & Allison, C. (1986). Protein degradation by human intestinal bacteria. Journal of General Microbiology, 132, 1647–1656.PubMedGoogle Scholar
  29. Marescau, B., De Deyn, P. P., Holvoet, J., Possemiers, I., Nagels, G., Saxena, V., et al. (1995). Guanidino compounds in serum and urine of cirrhotic patients. Metabolism, 44, 584–588.PubMedCrossRefGoogle Scholar
  30. Markle, R. A., Hollis, T. M., & Cosgarea, A. J. (1986). Renal histamine increases in the streptozotocin-diabetic rat. Experimental and Molecular Pathology, 44, 21–28.PubMedCrossRefGoogle Scholar
  31. Mcgivan, J. D., & Pastor-Anglada, M. (1994). Regulatory and molecular aspects of mammalian amino acid transport. Biochemical Journal, 299(Pt 2), 321–334.PubMedGoogle Scholar
  32. Mogensen, C. E., Schmitz, A., & Christensen, C. K. (1988). Comparative renal pathophysiology relevant to IDDM and NIDDM patients. Diabetes/Metabolism Reviews, 4, 453–483.PubMedCrossRefGoogle Scholar
  33. Morgado, C., Pinto-Ribeiro, F., & Tavares, I. (2008). Diabetes affects the expression of GABA and potassium chloride cotransporter in the spinal cord: A study in streptozotocin diabetic rats. Neuroscience Letters, 438, 102–106.PubMedCrossRefGoogle Scholar
  34. Nam, T. J., Noguchi, T., & Naito, H. (1991). Changes in the urinary excretion of acid-soluble peptides in rats injected with streptozotocin or dexamethasone: A trial to estimate the changes in the rate of whole-body protein degradation in those rats. British Journal of Nutrition, 65, 37–46.PubMedCrossRefGoogle Scholar
  35. Nieman, K. M., Hartz, C. S., Szegedi, S. S., Garrow, T. A., Sparks, J. D., & Schalinske, K. L. (2006). Folate status modulates the induction of hepatic glycine N-methyltransferase and homocysteine metabolism in diabetic rats. American Journal of Physiology. Endocrinology and Metabolism, 291, E1235–E1242.PubMedCrossRefGoogle Scholar
  36. Nieman, K. M., Rowling, M. J., Garrow, T. A., & Schalinske, K. L. (2004). Modulation of methyl group metabolism by streptozotocin-induced diabetes and all-trans-retinoic acid. Journal of Chemical Biology, 279, 45708–45712.CrossRefGoogle Scholar
  37. Oimomi, M., Hatanaka, H., Ishikawa, K., Kubota, S., Yoshimura, Y., & Baba, S. (1984). Increased fructose-lysine of nail protein in diabetic patients. Journal of Molecular Medicine, 62, 477–478.Google Scholar
  38. Oimomi, M., Igaki, N., Masuda, S., Hata, F., Maeda, Y., Matsumoto, S., et al. (1988). Hair protein glycation as a long-term index of blood glucose in diabetics. Diabetes Research and Clinical Practice, 5, 305–308.PubMedCrossRefGoogle Scholar
  39. Oimomi, M., Nishimoto, S., Kitamura, Y., Matsumoto, S., Hatanaka, H., Ishikawa, K., et al. (1985). Increased fructose-lysine of hair protein in diabetic patients. Klinische Wochenschrift, 63, 728–730.PubMedCrossRefGoogle Scholar
  40. Omar, E. A., Kam, A., Alqahtani, A., Li, K. M., Razmovski-Naumovski, V., Nammi, S., et al. (2006). Herbal medicines and nutraceuticals for diabetic vascular complications: Mechanisms of action and bioactive phytochemicals. Current Pharmaceutical Design, 16(34), 3776–3807.CrossRefGoogle Scholar
  41. Panagia, V., Ganguly, P. K., Gupta, M. P., Taira, Y., & Dhalla, N. S. (1989). Alterations of phosphatidylethanolamine N-methylation in rat heart by quinidine. Journal of Cardiovascular Pharmacology, 14, 763–769.PubMedCrossRefGoogle Scholar
  42. Peng, Y., Yuan, J., Liu, F., & Ye, J. (2005). Determination of active components in rosemary by capillary electrophoresis with electrochemical detection. Journal of Pharmaceutical and Biomedical Analysis, 39, 431–437.PubMedCrossRefGoogle Scholar
  43. Piaggio, M. V., Peirotti, M. B., & Deiber, J. A. (2007). Determination of the microenvironment-pH and charge and size characteristics of amino acids through their electrophoretic mobilities determined by CZE. Electrophoresis, 28, 3658–3673.PubMedCrossRefGoogle Scholar
  44. Ratnam, S., Wijekoon, E. P., Hall, B., Garrow, T. A., Brosnan, M. E., & Brosnan, J. T. (2006). Effects of diabetes and insulin on betaine-homocysteine S-methyltransferase expression in rat liver. American Journal of Physiology. Endocrinology and Metabolism, 290, E933–E939.PubMedCrossRefGoogle Scholar
  45. Robinson, K. A., Weinstein, M. L., Lindenmayer, G. E., & Buse, M. G. (1995). Effects of diabetes and hyperglycemia on the hexosamine synthesis pathway in rat muscle and liver. Diabetes, 44, 1438–1446.PubMedCrossRefGoogle Scholar
  46. Ruperez, F. J., Garcia-Martinez, D., Baena, B., Maeso, N., Cifuentes, A., Barbas, C., et al. (2008). Evolution of oxidative stress parameters and response to oral vitamins E and C in streptozotocin-induced diabetic rats. The Journal of Pharmacy and Pharmacology, 60, 871–878.PubMedCrossRefGoogle Scholar
  47. Ruperez, F. J., Garcia-Martinez, D., Baena, B., Maeso, N., Vallejo, M., Angulo, S., et al. (2009). Dunaliella salina extract effect on diabetic rats: Metabolic fingerprinting and target metabolite analysis. Journal of Pharmaceutical and Biomedical Analysis, 49, 786–792.PubMedCrossRefGoogle Scholar
  48. Ruperez, F. J., Mach, M., & Barbas, C. (2004). Direct liquid chromatography method for retinol, alpha- and gamma-tocopherols in rat plasma. Journal of Chromatography B, 800, 225–230.CrossRefGoogle Scholar
  49. Sasaki, M., Sato, K., & Maruhama, Y. (1988). Rapid changes in urinary serine and branched-chain amino acid excretion among diabetic patients during insulin treatment. Diabetes Research and Clinical Practice, 5, 219–224.PubMedCrossRefGoogle Scholar
  50. Schuster, J., Knill, T., Reichelt, M., Gershenzon, J., & Binder, S. (2006). Branched-chain aminotransferase4 is part of the chain elongation pathway in the biosynthesis of methionine-derived glucosinolates in Arabidopsis. Plant Cell, 18, 2664–2679.PubMedCrossRefGoogle Scholar
  51. Scislowski, P. W., Foster, A. R., & Fuller, M. F. (1994). Regulation of oxidative degradation of l-lysine in rat liver mitochondria. Biochemical Journal, 300(Pt 3), 887–891.PubMedGoogle Scholar
  52. Selby, P. L. (1988). Osteopenia and diabetes. Diabetic Medicine, 5, 423–428.PubMedCrossRefGoogle Scholar
  53. She, P., Van Horn, C., Reid, T., Hutson, S. M., Cooney, R. N., & Lynch, C. J. (2007). Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. American Journal of Physiology. Endocrinology and Metabolism, 293, E1552–E1563.PubMedCrossRefGoogle Scholar
  54. Shinno, H., Noda, C., Tanaka, K., & Ichihara, A. (1980). Induction of l-lysine-2-oxoglutarate reductase by glucagon and glucocorticoid in developing and adult rats: In vivo and in vitro studies. Biochimica et Biophysica Acta, 633, 310–316.PubMedCrossRefGoogle Scholar
  55. Sjölin, J., Stjernström, H., Henneberg, S., Hambraeus, L., & Friman, G. (1989). Evaluation of urinary 3-methylhistidine excretion in infection by measurements of 1-methylhistidine and the creatinine ratios. American Journal of Clinical Nutrition, 49, 62–70.PubMedGoogle Scholar
  56. Stühlinger, M. C., & Stanger, O. (2005). Asymmetric dimethyl-l-arginine (ADMA): A possible link between homocyst(e)ine and endothelial dysfunction. Current Drug Metabolism, 6, 3–14.PubMedCrossRefGoogle Scholar
  57. Sun, D., Wollin, A., & Stephen, A. M. (2002). Moderate folate deficiency influences polyamine synthesis in rats. Journal of Nutrition, 132, 2632–2637.PubMedGoogle Scholar
  58. Szabó, A., Kenesei, E., Körner, A., Miltényi, M., Szücs, L., & Nagy, I. (1991). Changes in plasma and urinary amino acid levels during diabetic ketoacidosis in children. Diabetes Research and Clinical Practice, 12, 91–97.PubMedCrossRefGoogle Scholar
  59. Tapiero, H., Mathé, G., Couvreur, P., & Tew, K. D. (2002). I. Arginine. Biomedicine and Pharmacotherapy, 56, 439–445.CrossRefGoogle Scholar
  60. Thornalley, P. J. (2005). The potential role of thiamine (vitamin B1) in diabetic complications. Current Diabetes Review, 1, 287–298.CrossRefGoogle Scholar
  61. Van den Berg, R. A., Hoefsloot, H. C. J., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics, 7, 142.PubMedCrossRefGoogle Scholar
  62. Vaz, F. M., Ofman, R., Westinga, K., Back, J. W., & Wanders, R. J. (2001). Molecular and biochemical characterization of rat epsilon-N-trimethyllysine hydroxylase, the first enzyme of carnitine biosynthesis. Journal of Chemical Biology, 276, 33512–33517.CrossRefGoogle Scholar
  63. Vaz, F. M., & Wanders, R. J. (2002). Carnitine biosynthesis in mammals. Biochemical Journal, 361, 417–429.PubMedCrossRefGoogle Scholar
  64. Verrey, F., Singer, D., Ramadan, T., Vuille-Dit-Bille, R. N., Mariotta, L., & Camargo, S. M. (2009). Kidney amino acid transport. Pflugers Archiv, 458, 53–60.PubMedCrossRefGoogle Scholar
  65. Ward, D. T., Yau, S. K., Mee, A. P., Mawer, E. B., Miller, C. A., Garland, H. O., et al. (2001). Functional, molecular, and biochemical characterization of streptozotocin-induced diabetes. Journal of the American Society of Nephrology, 12, 779–790.PubMedGoogle Scholar
  66. Warrack, B., Hnatyshyn, S., Ott, K., Reily, M., Sanders, M., Zhang, H., et al. (2009). Normalization strategies for metabonomic analysis of urine samples. Journal of Chromatography B, 877, 547–552.CrossRefGoogle Scholar
  67. Williams, K. T., Garrow, T. A., & Schalinske, K. L. (2008). Type I diabetes leads to tissue-specific DNA hypomethylation in male rats. Journal of Nutrition, 138, 2064–2069.PubMedCrossRefGoogle Scholar
  68. Wolf, A., Weir, P., Segar, P., Stone, J., & Shield, J. (2001). Impaired fatty acid oxidation in propofol infusion syndrome. Lancet, 357, 606–607.PubMedCrossRefGoogle Scholar
  69. Wu, Y. C., Monnier, V., & Friedlander, M. (1995). Reliable determination of furosine in human serum and dialysate proteins by high-performance liquid chromatography. Journal of Chromatography B, 667, 328–332.CrossRefGoogle Scholar
  70. Yeo, E. J., & Wagner, C. (1994). Tissue distribution of glycine N-methyltransferase, a major folate-binding protein of liver. Proceedings of the National Academy of Sciences of the United States of America, 91, 210–214.PubMedCrossRefGoogle Scholar
  71. Zhai, G., Wang-Sattler, R., Hart, D. J., Arden, N. K., Hakim, A. J., Illig, T., et al. (2010). Serum branched-chain amino acid to histidine ratio: A novel metabolomic biomarker of knee osteoarthritis. Annals of the Rheumatic Diseases, 69, 1227–1231.PubMedCrossRefGoogle Scholar
  72. Zhang, S., Nagana Gowda, G. A., Asiago, V., Shanaiah, N., Barbas, C., & Raftery, D. (2008). Correlative and quantitative 1H NMR-based metabolomics reveals specific metabolic pathway disturbances in diabetic rats. Analytical Biochemistry, 383, 76–84.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Joanna Godzien
    • 1
    • 2
  • Diana García-Martínez
    • 1
  • Paz Martinez-Alcazar
    • 1
  • Francisco J. Ruperez
    • 1
  • Coral Barbas
    • 1
    Email author
  1. 1.CEMBIO (Center for Metabolomics and Bioanalysis) Pharmacy Faculty, Campus MonteprincipeSan Pablo-CEU UniversityMadridSpain
  2. 2.Department of Molecular Biology, Faculty of Mathematics and Natural SciencesThe John Paul II Catholic University of LublinLublinPoland

Personalised recommendations