Metabolomics

, Volume 8, Issue 4, pp 579–597 | Cite as

The metabolome of human placental tissue: investigation of first trimester tissue and changes related to preeclampsia in late pregnancy

  • Warwick B. Dunn
  • Marie Brown
  • Stephanie A. Worton
  • Kyle Davies
  • Rebecca L. Jones
  • Douglas B. Kell
  • Alexander E. P. Heazell
Original Article

Abstract

Unique biochemical and physical challenges to both mother and fetus are observed during human pregnancy, and the placenta plays an important role in protecting the fetus and supporting its development. Consequently, many pregnancy complications are associated with altered placental biochemistry and structure. Here we have further developed a combination of analytical tools for determining the tissue metabolome of placental tissue by applying a methanol/water/chloroform extraction method followed by analysis of the polar fraction (methanol/water) using GC–ToF–MS and of the non-polar fraction (chloroform) using UPLC–LTQ–Orbitrap–MS. This combination maximises the number of different metabolites detected and is the first holistic investigation of placental tissue applying UPLC–MS. Placental tissue differs between early and late first trimester pregnancies in that the developing placenta is exposed to significantly different oxygen tensions and undergoes a change from histiotrophic to haemotrophic nutrition. Application of these metabolomic methods detected 156 unique and chemically identified metabolites that showed statistically significant differences (P < 0.05). These included changes in di- and triglycerides, phospholipids, sphingolipids, fatty acids and fatty acid carnitines. This is the first metabolomics study to identify these changes that potentially show the initiation or switch to fatty acid beta-oxidation for mitochondrial ATP production. A separate study showed a small number of changes that were related to the position of sampling of the placental tissue and to the type of delivery from pregnancy. This result indicates that variations associated with sampling position and delivery type are small compared to between-subject variation. However, the authors recommend robust experimental design which may include sampling from the same position of the placenta and from the same delivery type. When comparing tissue from term-uncomplicated pregnancies with those exhibiting preeclampsia at term, 86 unique and chemically identified metabolites showed statistically significant differences (P < 0.05). Potential changes in metabolism operating in the mitochondria, in vitamin D metabolism and in oxidative and nitrative stress were observed. These proof-of-principle studies demonstrate the sensitivity of placental tissue metabolomics to define changes related to alterations in environment and perfusion and related to diseases of pregnancy including preeclampsia. Data are available on request.

Keywords

Metabolomics Mass spectrometry Placenta Tissue Preeclampsia First trimester Systems biology 

References

  1. Allen, J., Davey, H. M., Broadhurst, D., Heald, J. K., Rowland, J. J., Oliver, S. G., et al. (2003). High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nature Biotechnology, 21, 692–696.PubMedCrossRefGoogle Scholar
  2. Altun, Z. S., Uysal, S., Guner, G., Yilmaz, O., & Posaci, C. (2008). Effects of oral l-arginine supplementation on blood pressure and asymmetric dimethylarginine in stress-induced preeclamptic rats. Cell Biochemistry and Function, 26, 648–653.PubMedCrossRefGoogle Scholar
  3. Anderson, C. M. (2007). Preeclampsia: Exposing future cardiovascular risk in mothers and their children. Jognn-Journal of Obstetric Gynecologic and Neonatal Nursing, 36, 3–8.CrossRefGoogle Scholar
  4. Atherton, H. J., Gulston, M. K., Bailey, N. J., Cheng, K. K., Zhang, W., Clarke, K., et al. (2009). Metabolomics of the interaction between PPAR-alpha and age in the PPAR-alpha-null mouse. Molecular Systems Biology, 5, 259.Google Scholar
  5. Begley, P., Francis-McIntyre, S., Dunn, W. B., Broadhurst, D. I., Halsall, A., Tseng, A., et al. (2009). Development and performance of a gas chromatography-time-of-flight mass spectrometry analysis for large-scale nontargeted metabolomic studies of human serum. Analytical Chemistry, 81, 7038–7046.PubMedCrossRefGoogle Scholar
  6. Brison, D. R., Hollywood, K., Arnesen, R., & Goodacre, R. (2007). Predicting human embryo viability: the road to non-invasive analysis of the secretome using metabolic footprinting. Reproductive Biomedicine Online, 15, 296–302.PubMedCrossRefGoogle Scholar
  7. Broadhurst, D. I., & Kell, D. B. (2006). Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics, 2, 171–196.CrossRefGoogle Scholar
  8. Brown, M., Dunn, W. B., Dobson, P., Patel, Y., Winder, C. L., Francis-McIntyre, S., et al. (2009). Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics. Analyst, 134, 1322–1332.PubMedCrossRefGoogle Scholar
  9. Brown, M., Wedge, D. C., Goodacre, R., Kell, D. B., Baker, P. N., Kenny, L.C, et al. (2011) Automated workflows for accurate mass-based putative metabolite identification in LC/MS-derived metabolomic datasets. Bioinformatics 27, 1108–1112.Google Scholar
  10. Burton, G. J., Jauniaux, E., & Charnock-Jones, D. S. (2010). The influence of the intrauterine environment on human placental development. International Journal of Developmental Biology, 54, 303–311.PubMedCrossRefGoogle Scholar
  11. Cetin, I., Marconi, A. M., Bozzetti, P., Sereni, L. P., Corbetta, C., Pardi, G., et al. (1988). Umbilical amino acid concentrations in appropriate and small for gestational age infants: a biochemical difference present in utero. American Journal of Obstetrics and Gynecology, 158, 120–126.PubMedGoogle Scholar
  12. Colombini, M. (2010). Ceramide channels and their role in mitochondria-mediated apoptosis. Biochimica Et Biophysica Acta-Bioenergetics, 1797, 1239–1244.CrossRefGoogle Scholar
  13. Davey, D. A., & Macgillivray, I. (1988). The classification and definition of the hypertensive disorders of pregnancy. American Journal of Obstetrics and Gynecology, 158, 892–898.PubMedGoogle Scholar
  14. Deepinder, F., Chowdary, H. T., & Agarwal, A. (2007). Role of metabolomic analysis of biomarkers in the management of male infertility. Expert Review of Molecular Diagnostics, 7, 351–358.PubMedCrossRefGoogle Scholar
  15. Dordevic, N. Z., Babic, G. M., Markovic, S. D., Ognjanovic, B. I., Stajn, A. S., Zikic, R. V., et al. (2008). Oxidative stress and changes in antioxidative defense system in erythrocytes of preeclampsia in women. Reproductive Toxicology, 25, 213–218.PubMedCrossRefGoogle Scholar
  16. Dunn, W. B., Broadhurst, D. I., Atherton, H. J., Goodacre, R., & Griffin, J. L. (2011a). Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chemical Society Reviews, 40, 387–426.PubMedCrossRefGoogle Scholar
  17. Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Halsall, A., McIntyre, S., et al. (2011b). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6, 1060–1083.Google Scholar
  18. Dunn, W. B., Broadhurst, D., Brown, M., Baker, P. N., Redman, C. W. G., Kenny, L. C., et al. (2008). Metabolic profiling of serum using ultra performance liquid chromatography and the LTQ-orbitrap mass spectrometry system. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 871, 288–298.CrossRefGoogle Scholar
  19. Dunn, W. B., Brown, M., Worton, S. A., Crocker, I. P., Broadhurst, D., Horgan, R., et al. (2009). Changes in the metabolic footprint of placental explant-conditioned culture medium identifies metabolic disturbances related to hypoxia and pre-eclampsia. Placenta, 30, 974–980.PubMedCrossRefGoogle Scholar
  20. Gardosi, J., Chang, A., Kalyan, B., Sahota, D., & Symonds, E. M. (1992). Customised antenatal growth charts. Lancet, 339, 286–287.CrossRefGoogle Scholar
  21. Genbacev, O., Joslin, R., Damsky, C. H., Polliotti, B. M., & Fisher, S. J. (1996). Hypoxia alters early gestation human cytotrophoblast differentiation invasion in vitro and models the placental defects that occur in preeclampsia. Journal of Clinical Investigation, 97, 540–550.PubMedCrossRefGoogle Scholar
  22. Graca, G., Duarte, I. F., Barros, A. S., Goodfellow, B. J., Diaz, S., Carreira, I. M., et al. (2009). H-1 NMR based metabonomics of human amniotic fluid for the metabolic characterization of fetus malformations. Journal of Proteome Research, 8, 4144–4150.PubMedCrossRefGoogle Scholar
  23. Graca, G., Duarte, I. F., Barros, A. S., Goodfellow, B. J., Diaz, S. O., Pinto, J., et al. (2010). Impact of prenatal disorders on the metabolic profile of second trimester amniotic fluid: a nuclear magnetic resonance metabonomic study. Journal of Proteome Research, 9, 6016–6024.PubMedCrossRefGoogle Scholar
  24. Graca, G., Duarte, I. F., Goodfellow, B. J., Barros, A. S., Carreira, I. M., Couceiro, A. B., et al. (2007). Potential of NMR spectroscopy for the study of human amniotic fluid. Analytical Chemistry, 79, 8367–8375.PubMedCrossRefGoogle Scholar
  25. Granger, J. P., Alexander, B. T., Llinas, M. T., Bennett, W. A., & Khalil, R. A. (2002). Pathophysiology of preeclampsia: Linking placental ischemia/hypoxia with microvascular dysfunction. Microcirculation, 9, 147–160.PubMedGoogle Scholar
  26. Guilbert, J. J. (2003). The world health report 2002—reducing risks, promoting healthy life. Educ Health (Abingdon), 16, 230.CrossRefGoogle Scholar
  27. Gupta, R., Maruthy, K. N., Mhaskar, A. M., & Padmanabhan, L. D. (2003). Serum nitrate levels as an index of endothelial function in pre-eclampsia and normal pregnancy. Indian Journal of Physiology and Pharmacology, 47, 185–190.PubMedGoogle Scholar
  28. Haugen, M., Brantsaeter, A. L., Trogstad, L., Alexander, J., Roth, C., Magnus, P., et al. (2009). Vitamin D supplementation and reduced risk of preeclampsia in nulliparous women. Epidemiology, 20, 720–726.PubMedCrossRefGoogle Scholar
  29. Heazell, A. E. P., Brown, M., Dunn, W. B., Worton, S. A., Crocker, I. P., Baker, P. N., et al. (2008). Analysis of the metabolic footprint and tissue metabolome of placental villous explants cultured at different oxygen tensions reveals novel redox biomarkers. Placenta, 29, 691–698.PubMedCrossRefGoogle Scholar
  30. Heazell, A. E. P., Brown, M., Worton, S. A., & Dunn, W. B. (2011). Review: The effects of oxygen on normal and pre-eclamptic placental tissue—insights from metabolomics. Placenta, 79, 413–424.Google Scholar
  31. Horgan, R. P., Broadhurst, D. I., Dunn, W. B., Brown, M., Heazell, A. E., Kell, D. B., et al. (2009a). Changes in the metabolic footprint of placental explant-conditioned medium cultured in different oxygen tensions from placentas of small for gestational age and normal pregnancies. Placenta, 31, 893–901.CrossRefGoogle Scholar
  32. Horgan, R. P., Clancy, O. H., Myers, J. E., & Baker, P. N. (2009b). An overview of proteomic and metabolomic technologies and their application to pregnancy research. Bjog-an International Journal of Obstetrics and Gynaecology, 116, 173–181.PubMedCrossRefGoogle Scholar
  33. Jauniaux, E., Watson, A. L., Hempstock, J., Bao, Y. P., Skepper, J. N., & Burton, G. J. (2000). Onset of maternal arterial blood flow and placental oxidative stress—a possible factor in human early pregnancy failure. American Journal of Pathology, 157, 2111–2122.PubMedCrossRefGoogle Scholar
  34. Kaddurah-Daouk, R., Kristal, B. S., & Weinshilboum, R. M. (2008) Metabolomics: A global biochemical approach to drug response and disease, Annual Review of Pharmacology and Toxicology, 653–683.Google Scholar
  35. Kaneko-Tarui, T., Zhang, L., Austin, K. J., Henkes, L. E., Johnson, J., Hansen, T. R., et al. (2007). Maternal and embryonic control of uterine sphingolipid-metabolizing enzymes during murine embryo implantation. Biology of Reproduction, 77, 658–665.PubMedCrossRefGoogle Scholar
  36. Kell, D. B. (2009). Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Medical Genomics 2.Google Scholar
  37. Kell, D. B. (2010). Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others as examples. Archives of Toxicology, 84, 825–889.PubMedCrossRefGoogle Scholar
  38. Kell, D. B., Brown, M., Davey, H. M., Dunn, W. B., Spasic, I., & Oliver, S. G. (2005). Metabolic footprinting and systems biology: The medium is the message. Nature Reviews. Microbiology, 3, 557–565.PubMedCrossRefGoogle Scholar
  39. Kell, D. B., & Westerhoff, H. V. (1986). Metabolic control theory: its role in microbiology and biotechnology. FEMS Microbiology Reviews, 39, 305–320.CrossRefGoogle Scholar
  40. Kenny, L. C., Broadhurst, D., Brown, M., Dunn, W. B., Redman, C. W., Kell, D. B., et al. (2008). Detection and identification of novel metabolomic biomarkers in preeclampsia. Reprod Sci, 15, 591–597.PubMedCrossRefGoogle Scholar
  41. Kenny, L. C., Broadhurst, D. I., Dunn, W., Brown, M., North, R. A., McCowan, L., et al. (2010). Robust early pregnancy prediction of later preeclampsia using metabolomic biomarkers. Hypertension, 56, 741–749.PubMedCrossRefGoogle Scholar
  42. Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmuller, E., et al. (2005). GMD@CSB.DB: the Golm metabolome database. Bioinformatics, 21, 1635–1638.PubMedCrossRefGoogle Scholar
  43. Kossenjans, W., Eis, A., Sahay, R., Brockman, D., & Myatt, L. (2000). Role of peroxynitrite in altered fetal-placental vascular reactivity in diabetes or preeclampsia. Am J Physiol Heart Circ Physiol, 278, H1311–H1319.PubMedGoogle Scholar
  44. Mizugishi, K., Li, C. L., Olivera, A., Bielawski, J., Bielawska, A., Deng, C. X., et al. (2007). Maternal disturbance in activated sphingolipid metabolism causes pregnancy loss in mice. Journal of Clinical Investigation, 117, 2993–3006.PubMedCrossRefGoogle Scholar
  45. Myatt, L. (2010). Reactive oxygen and nitrogen species and functional adaptation of the placenta. Placenta, 31, S66–S69.PubMedCrossRefGoogle Scholar
  46. Neilson, J. P., Lavender, T., Quenby, S., & Wray, S. (2003). Obstructed labour. British Medical Bulletin, 67, 191–204.PubMedCrossRefGoogle Scholar
  47. Page, K. (1993). The physiology of the human placenta (1st ed.). London: Routledge.Google Scholar
  48. Palmer, S. K., Moore, L. G., Young, D. A., Cregger, B., Berman, J. C., & Zamudio, S. (1999). Altered blood pressure course during normal pregnancy and increased preeclampsia at high altitude (3100 meters) in Colorado. American Journal of Obstetrics and Gynecology, 180, 1161–1168.PubMedCrossRefGoogle Scholar
  49. Rajakumar, A., Whitelock, K. A., Weissfeld, L. A., Daftary, A. R., Markovic, N., & Conrad, K. P. (2001). Selective overexpression of the hypoxia-inducible transcription factor, HIF-2 alpha, in placentas from women with preeclampsia. Biology of Reproduction, 64, 499–506.PubMedGoogle Scholar
  50. Rampersad, R., & Nelson, D. M. (2007). Trophoblast biology, responses to hypoxia and placental dysfunction in preeclampsia. Frontiers in Bioscience, 12, 2447–2456.PubMedCrossRefGoogle Scholar
  51. Rauch, S., Zender, R., & Kostlin, A. (1956). Biochemistry of placenta extracts. Helv Med Acta, 23, 75–109.PubMedGoogle Scholar
  52. Rinaldo, P., O’Shea, J. J., Coates, P. M., Hale, D. E., Stanley, C. A., & Tanaka, K. (1988). Medium-chain acyl-CoA dehydrogenase deficiency. Diagnosis by stable-isotope dilution measurement of urinary n-hexanoylglycine and 3-phenylpropionylglycine. New England Journal of Medicine, 319, 1308–1313.PubMedCrossRefGoogle Scholar
  53. Robinson, C. J., Alanis, M. C., Wagner, C. L., Hollis, B. W., & Johnson, D. D. (2010) Plasma 25-hydroxyvitamin D levels in early-onset severe preeclampsia. American Journal of Obstetrics and Gynecology, 203, 366Google Scholar
  54. Romanowicz, L., & Bankowski, E. (2009). Preeclampsia-associated alterations in sphingolipid composition of the umbilical cord artery. Clinical Biochemistry, 42, 1719–1724.PubMedCrossRefGoogle Scholar
  55. Schiessl, B., Strasburger, C., Bidlingmaier, M., Mylonas, I., Jeschke, U., Kainer, F., et al. (2006). Plasma- and urine concentrations of nitrite/nitrate and cyclic Guanosinemonophosphate in intrauterine growth restricted and preeclamptic pregnancies. Archives of Gynecology and Obstetrics, 274, 150–154.PubMedCrossRefGoogle Scholar
  56. Seli, E., Botros, L., Sakkas, D., & Burns, D. H. (2008). Noninvasive metabolomic profiling of embryo culture media using proton nuclear magnetic resonance correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertility and Sterility, 90, 2183–2189.PubMedCrossRefGoogle Scholar
  57. Siskind, L. J. (2005). Mitochondrial ceramide and the induction of apoptosis. Journal of Bioenergetics and Biomembranes, 37, 143–153.PubMedCrossRefGoogle Scholar
  58. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: processing mass spectrometry data for metabolite profiling using Nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787.PubMedCrossRefGoogle Scholar
  59. Soleymanlou, N., Jurisica, I., Nevo, O., Ietta, F., Zhang, X., Zamudio, S., et al. (2005). Molecular evidence of placental hypoxia in preeclampsia. The journal of clinical endocrinology and metabolism, 90, 4299–4308.PubMedCrossRefGoogle Scholar
  60. Speake, P. F., Glazier, J. D., Ayuk, P. T., Reade, M., Sibley, C. P., & D’ Souza, S. W. (2003). l-Arginine transport across the basal plasma membrane of the syncytiotrophoblast of the human placenta from normal and preeclamptic pregnancies. Journal of Clinical Endocrinology and Metabolism, 88, 4287–4292.PubMedCrossRefGoogle Scholar
  61. Spiegel, S., & Milstien, S. (2002). Sphingosine 1-phosphate, a key cell signaling molecule. Journal of Biological Chemistry, 277, 25851–25854.PubMedCrossRefGoogle Scholar
  62. Tanaka, K., Budd, M. A., Efron, M. L., & Isselbac, K. J. (1966). Isovaleric acidemia—a new genetic defect of leucine metabolism. Proceedings of the National Academy of Sciences of the United States of America, 56, 236.Google Scholar
  63. Tissot van Patot, M. C., Murray, A. J., Beckey, V., Cindrova-Davies, T., Johns, J., Zwerdlinger, L., et al. (2010). Human placental metabolic adaptation to chronic hypoxia, high altitude: hypoxic preconditioning. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 298, R166–R172.PubMedCrossRefGoogle Scholar
  64. Vadillo-Ortega, F., Perichart-Perera, O., Espino, S., Avila-Vergara, M. A., Ibarra, I., Ahued, R., et al. (2011). Effect of supplementation during pregnancy with l-arginine and antioxidant vitamins in medical food on pre-eclampsia in high risk population: randomised controlled trial. BMJ, 342, d2901.PubMedCrossRefGoogle Scholar
  65. Vaiman, D., Mondon, F., Garces-Duran, A.G., Mignot, T.M., Robert, B., Rebourcet, R., et al. (2005). Hypoxia-activated genes from early placenta are elevated in preeclampsia, but not in intra-uterine growth retardation. BMC Genomics, 6, 111.Google Scholar
  66. Webster, R. P., Roberts, V. H., & Myatt, L. (2008). Protein nitration in placenta—functional significance. Placenta, 29, 985–994.PubMedCrossRefGoogle Scholar
  67. Whitridge Williams, J. (2001). Physiology of pregnancy. In F. G. Cunningham, N. F. Gant, K. G. Leveno, L. C. Gilstrap, J. C. Hauth, & K. D. Wenstrom (Eds.), Williams obstetrics (pp. 63–200). New York: McGraw-Hill.Google Scholar
  68. Zelena, E., Dunn, W. B., Broadhurst, D., Francis-McIntyre, S., Carroll, K. M., Begley, P., et al. (2009). Development of a robust and repeatable UPLC–MS method for the long-term metabolomic study of human serum. Analytical Chemistry, 81, 1357–1364.PubMedCrossRefGoogle Scholar
  69. Zhang, H. H., Wang, Y. P., & Chen, D. B. (2011). Analysis of nitroso-proteomes in normotensive and severe preeclamptic human placentas. Biology of Reproduction, 84, 966–975.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Warwick B. Dunn
    • 1
    • 2
    • 3
    • 4
  • Marie Brown
    • 4
  • Stephanie A. Worton
    • 5
  • Kyle Davies
    • 6
  • Rebecca L. Jones
    • 5
  • Douglas B. Kell
    • 2
  • Alexander E. P. Heazell
    • 4
    • 5
  1. 1.Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary BiocentreUniversity of ManchesterManchesterUK
  2. 2.School of Chemistry, Manchester Interdisciplinary BiocentreUniversity of ManchesterManchesterUK
  3. 3.Centre for Advanced Discovery & Experimental Therapeutics (CADET), Central Manchester NHS Foundation TrustUniversity of Manchester, Manchester Academic Health Sciences CentreManchesterUK
  4. 4.School of BiomedicineUniversity of Manchester & Manchester NIHR Biomedical Research CentreManchesterUK
  5. 5.Maternal and Fetal Health Research CentreUniversity of Manchester, St Mary’s HospitalManchesterUK
  6. 6.School of Chemical Engineering and Analytical Sciences, Manchester Interdisciplinary BiocentreUniversity of ManchesterManchesterUK

Personalised recommendations