, Volume 9, Supplement 1, pp 30–43 | Cite as

Differential mobility analysis-mass spectrometry coupled to XCMS algorithm as a novel analytical platform for metabolic profiling

  • Pablo Martínez-LozanoEmail author
  • Ernesto Criado
  • Guillermo Vidal
  • Simone Cristoni
  • Francesco Franzoso
  • Mara Piatti
  • Paolo Brambilla
Original Article


The development of additional analytical instruments is of great interest to expand metabolome coverage. Differential mobility analyzers (DMAs) are a type of ion mobility spectrometers that can be straightforwardly interfaced with commercial mass spectrometers. In this pilot study, we explored the capabilities of an ion mobility-mass spectrometry platform, based on interfacing a Differential Mobility Analyzer with a commercial quadrupole time of-flight mass spectrometer (DMA-QTOF), to phenotype the metabolic urinary fingerprint of a cohort of prostate cancer patients (n = 8) and a group of healthy counterparts (n = 20). The resolving power of the DMA and the QTOF was ∼55 and ∼6,500, respectively. The transmission efficiency of the DMA was 50%. We illustrate the benefits of incorporating the DMA through the separation of isobaric species according to their electrical mobility, which were not fully resolved by the high resolution QTOF. In addition, we show that the bidimensional electrical mobility-mass spectra obtained can be successfully processed with the XCMS routine, extending its potential to ion mobility-mass spectrometry-based platforms. Data mining with XCMS revealed seven features significantly down-regulated in cancer patients (P < 0.05). These peaks were the input of principal component analysis, showing a clear separation tendency from prostate cancer patients and healthy controls. NIST MS search algorithm was used to classify the samples according to their class, with a resulting 75% sensitivity and 80% specificity. We pursued further fragmentation experiments for structural elucidation of the most discriminant metabolites, thereby illustrating the full potential of this analytical platform for the task. In summary, DMA-MS/MS provides an additional level of separation as compared to traditional mass spectrometry-based methods, thereby increasing the array of multi-analytical platforms available to global metabolite profiling and metabolite identification.


Ion mobility spectrometry Differential mobility analyzer Mass spectrometry Metabolic profiling XCMS 



We thank Ms. M. Hernández, Mr. A. Casado, and rest of SEADM team for their assistance during the experiments. Ms. F. Dibari and Mr. L. Zingaro from ISB are acknowledged for their advice with XCMS data analysis. Dr. Duchoslav (AB SCIEX) is acknowledged for her support with the wiff to mzdata translator. The research leading to these results has received funding from SEADM, and PML was supported by a Marie Curie Intra European Fellowship (PIEF-GA-2008–220511) within the Seventh European Community Framework Programme FP7/2007–2013.

Supplementary material

11306_2011_319_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 37 kb)


  1. Bales, J. R., Higham, D. P., Howe, I., Nicholson, J. K., & Sadler, P. J. (1984). Use of high-resolution proton nuclear magnetic resonance spectroscopy for rapid multi-component analysis of urine. Clinical Chemistry, 30(3), 426–432.PubMedGoogle Scholar
  2. Beaudry, F., & Vachon, P. (2006). Electrospray ionization suppression, a physical or a chemical phenomenon? Biomedical Chromatography, 20(2), 200–205.PubMedCrossRefGoogle Scholar
  3. Brown, S. C., Kruppa, G., & Dasseux, J.-L. (2005). Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrometry Reviews, 24(2), 223–231.PubMedCrossRefGoogle Scholar
  4. Cristoni, S., et al. (2009). MALDI-MS-NIST library approach for colorectal cancer diagnosis. Rapid Communications in Mass Spectrometry, 23(17), 2839–2845.PubMedCrossRefGoogle Scholar
  5. Dwivedi, P., Schultz, A. J., & Hill, H. H., Jr. (2010). Metabolic profiling of human blood by high-resolution ion mobility mass spectrometry (IM-MS). International Journal of Mass Spectrometry, 298(1–3), 78–90.PubMedCrossRefGoogle Scholar
  6. Dwivedi, P., et al. (2008). Metabolic profiling by ion mobility mass spectrometry (IMMS). Metabolomics, 4(1), 63–80.CrossRefGoogle Scholar
  7. Fernández de la Mora, J., de Juan, L., Eichler, T., & Rosell, J. (1998). Differential mobility analysis of molecular ions and nanometer particles. TrAC Trends in Analytical Chemistry, 17(6), 328–339.CrossRefGoogle Scholar
  8. Fernández de la Mora, J., Ude, S., & Thomson, B. A. (2006). The potential of differential mobility analysis coupled to MS for the study of very large singly and multiply charged proteins and protein complexes in the gas phase. Biotechnology Journal, 1(9), 988–997.CrossRefGoogle Scholar
  9. Gamero-Castaño, M., & Fernández de la Mora, J. (2000). Mechanisms of electrospray ionization of singly and multiply charged salt clusters. Analytica Chimica Acta, 406(1), 67–91.CrossRefGoogle Scholar
  10. Griffin, J. L., & Shockcor, J. P. (2004). Metabolic profiles of cancer cells. Nature Reviews Cancer, 4(7), 551–561.PubMedCrossRefGoogle Scholar
  11. Hogan, C. J., Jr, & Fernandez de la Mora, J. (2009). Tandem ion mobility-mass spectrometry (IMS-MS) study of ion evaporation from ionic liquid-acetonitrile nanodrops. Physical Chemistry Chemical Physics, 11(36), 8079–8090.PubMedCrossRefGoogle Scholar
  12. Hogan, C. J., Jr, & Fernandez de la Mora, J. (2010). Ion-pair evaporation from ionic liquid clusters. Journal of the American Society for Mass Spectrometry, 21(8), 1382–1386.PubMedCrossRefGoogle Scholar
  13. Jellum, E. (1977). Profiling of human body fluids in healthy and diseased states using gas chromatography and mass spectrometry, with special reference to organic acids. Journal of Chromatography, Part B, 143(5), 427–462.CrossRefGoogle Scholar
  14. Kaplan, K., et al. (2009). Monitoring dynamic changes in lymph metabolome of fasting and fed rats by electrospray ionization-ion mobility mass spectrometry (ESI-IMMS). Analytical Chemistry, 81(19), 7944–7953.PubMedCrossRefGoogle Scholar
  15. Karasek, F. W., Denney, D. W., & DeDecker, E. H. (1974). Plasma chromatography of normal alkanes and its relation to chemical ionization mass spectrometry. Analytical Chemistry, 46(8), 970–973.CrossRefGoogle Scholar
  16. Kind, T., Tolstikov, V., Fiehn, O., & Weiss, R. H. (2007). A comprehensive urinary metabolomic approach for identifying kidney cancer. Analytical Biochemistry, 363(2), 185–195.PubMedCrossRefGoogle Scholar
  17. Knutson, E. O., & Whitby, K. T. (1975). Aerosol classification by electric mobility: Apparatus, theory, and applications. Journal of Aerosol Science, 6(6), 443–451.CrossRefGoogle Scholar
  18. Martínez-Lozano, P., & Fernández de la Mora, J. (2005). Effect of acoustic radiation on DMA resolution. Aerosol Science and Technology, 39(9), 866–870.CrossRefGoogle Scholar
  19. Martínez-Lozano, P., & Fernández de la Mora, J. (2006). Resolution improvements of a nano-DMA operating transonically. Journal of Aerosol Science, 37(4), 500–512.CrossRefGoogle Scholar
  20. Martínez-Lozano, P., & Rus, J. (2010). Separation of isomers l-alanine and sarcosine in urine by electrospray ionization and tandem differential mobility analysis-mass spectrometry. Journal of the American Society for Mass Spectrometry, 21(7), 1129–1132.PubMedCrossRefGoogle Scholar
  21. Martínez-Lozano, P., Zingaro, L., Finiguerra, A., & Cristoni, S. (2011). Secondary electrospray ionization-mass spectrometry: Breath study on a control group. Journal of Breath Research, 5(1), 016002.PubMedCrossRefGoogle Scholar
  22. McConnell, M. L., & Novotný, M. (1975). Automated high-resolution gas chromatographic system for recording and evaluation of metabolic profiles. Journal of Chromatography, Part A, 112, 559–571.CrossRefGoogle Scholar
  23. Metz, T. O., et al. (2008). High-resolution separations and improved ion production and transmission in metabolomics. TrAC Trends in Analytical Chemistry, 27(3), 205–214.CrossRefGoogle Scholar
  24. Monton, M. R. N., & Soga, T. (2007). Metabolome analysis by capillary electrophoresis-mass spectrometry. Journal of Chromatography, Part A, 1168(1–2), 237–246.CrossRefGoogle Scholar
  25. Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29, 1181.PubMedCrossRefGoogle Scholar
  26. Perroud, B., et al. (2006). Pathway analysis of kidney cancer using proteomics and metabolic profiling. Molecular Cancer, 5(1), 64.PubMedCrossRefGoogle Scholar
  27. Plumb, R. S., et al. (2006). Generation of ultrahigh peak capacity LC separations via elevated temperatures and high linear mobile-phase velocities. Analytical Chemistry, 78(20), 7278–7283.PubMedCrossRefGoogle Scholar
  28. Rosell-Llompart, J., Loscertales, I. G., Bingham, D., & Fernández de la Mora, J. (1996). Sizing nanoparticles and ions with a short differential mobility analyzer. Journal of Aerosol Science, 27(5), 695–719.CrossRefGoogle Scholar
  29. Rus, J., et al. (2010). IMS-MS studies based on coupling a differential mobility analyzer (DMA) to commercial API-MS systems. International Journal of Mass Spectrometry, 298(1–3), 30–40.CrossRefGoogle Scholar
  30. Schneider, B. B., Covey, T. R., Coy, S. L., Krylov, E. V., & Nazarov, E. G. (2010). Chemical effects in the separation process of a differential mobility/mass spectrometer system. Analytical Chemistry, 82(5), 1867–1880.PubMedCrossRefGoogle Scholar
  31. Shvartsburg, A. A., Danielson, W. F., & Smith, R. D. (2010). High-resolution differential ion mobility separations using helium-rich gases. Analytical Chemistry, 82(6), 2456–2462.PubMedCrossRefGoogle Scholar
  32. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78(3), 779–787.PubMedCrossRefGoogle Scholar
  33. Soga, T., et al. (2003). Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. Journal of Proteome Research, 2(5), 488–494.PubMedCrossRefGoogle Scholar
  34. Stein, S. E. (1994). Estimating probabilities of correct identification from results of mass spectral library searches. Journal of the American Society for Mass Spectrometry, 5(4), 316–323.CrossRefGoogle Scholar
  35. Stein, S. E., & Scott, D. R. (1994). Optimization and testing of mass spectral library search algorithms for compound identification. Journal of the American Society for Mass Spectrometry, 5(9), 859–866.CrossRefGoogle Scholar
  36. Theodoridis, G., Gika, H. G., & Wilson, I. D. (2008). LC-MS-based methodology for global metabolite profiling in metabonomics/metabolomics. TrAC Trends in Analytical Chemistry, 27(3), 251–260.CrossRefGoogle Scholar
  37. Ude, S., Fernández de la Mora, J., & Thomson, B. A. (2004). Charge-induced unfolding of multiply charged polyethylene glycol ions. Journal of the American Chemical Society, 126(38), 12184–12190.PubMedCrossRefGoogle Scholar
  38. Weinstein, S. J., et al. (2009). Serum creatinine and prostate cancer risk in a prospective study. Cancer Epidemiology, Biomarkers and Prevention, 18(10), 2643–2649.PubMedCrossRefGoogle Scholar
  39. Werf, M. J. V. D., Overkamp, K. M., Muilwijk, B., Coulier, L., & Hankemeier, T. (2007). Microbial metabolomics: Toward a platform with full metabolome coverage. Analytical Biochemistry, 370(1), 17–25.PubMedCrossRefGoogle Scholar
  40. Williams, R., et al. (2006). A multi-analytical platform approach to the metabonomic analysis of plasma from normal and zucker (fa/fa) obese rats. Molecular BioSystems, 2(3–4), 174–183.PubMedCrossRefGoogle Scholar
  41. Wilson, I. D., et al. (2005). HPLC-MS-based methods for the study of metabonomics. Journal of Chromatography, Part B, 817(1), 67–76.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Pablo Martínez-Lozano
    • 1
    Email author
  • Ernesto Criado
    • 2
  • Guillermo Vidal
    • 2
  • Simone Cristoni
    • 1
    • 3
  • Francesco Franzoso
    • 4
  • Mara Piatti
    • 5
  • Paolo Brambilla
    • 5
    • 6
  1. 1.National Research Council, Institute for Biomedical TechnologiesSegrate (MI)Italy
  2. 2.SEADM, Technology Park of BoecilloValladolidSpain
  3. 3.ISB Ion Source & BiotechnologiesMilanItaly
  4. 4.Department of UrologyDesio HospitalDesioItaly
  5. 5.Clinical Pathology DepartmentDesio HospitalDesioItaly
  6. 6.Experimental Medicine Department, School of MedicineUniversity of Milano-BicoccaMonzaItaly

Personalised recommendations