, Volume 8, Issue 2, pp 244–252

Metabolic footprint of Lactobacillus acidophilus NCFM at different pH

  • Karolina Sulek
  • Henrik Lauritz Frandsen
  • Jørn Smedsgaard
  • Thomas Hjort Skov
  • Andrea Wilcks
  • Tine Rask Licht
Original Article


Lactobacillus acidophilus NCFM is a well known microorganism from the genomic and probiotic point of view. In order to analyze the potential interactions of NCFM with the surrounding environment, in vitro tests with the metabolic footprinting approach were performed. It was found that NCFM increased the concentration of lactic acid, succinic acid, adenine and arginine in the medium. The metabolism of NCFM did not change significantly between pH 5 and 7, suggesting that other environmental factors than pH might have bigger impact on its colonization throughout the gastrointestinal tract.


Lactobacillus acidophilus NCFM Metabolomics Metabolite footprint GIT Probiotics LCMS 


  1. Altermann, E., Russell, W. M., zcarate-Peril, M. A., Barrangou, R., Buck, B. L., McAuliffe, O., et al. (2005). Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proceedings of the National Academy of Sciences USA, 102, 3906–3912.CrossRefGoogle Scholar
  2. Barrangou, R., Altermann, E., Hutkins, R., Cano, R., & Klaenhammer, T. R. (2003). Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. Proceedings of the National Academy of Sciences USA, 100, 8957–8962.CrossRefGoogle Scholar
  3. Ben, J. E., Becker, I., Shapira, Y., & Levine, H. (2004). Bacterial linguistic communication and social intelligence. Trends in Microbiology, 12, 366–372.CrossRefGoogle Scholar
  4. Berg, J. M., Tymoczko, J. L., & Stryer, L. (2001). Biochemistry. New York, England: W. H. Freeman and Company.Google Scholar
  5. Bron, P. A., Grangette, C., Mercenier, A., de Vos, W. M., & Kleerebezem, M. (2004a). Identification of Lactobacillus plantarum genes that are induced in the gastrointestinal tract of mice. Journal of Bacteriology, 186, 5721–5729.PubMedCrossRefGoogle Scholar
  6. Bron, P. A., Hoffer, S. M., Van, S., II, de Vos, W. M., & Kleerebezem, M. (2004b). Selection and characterization of conditionally active promoters in Lactobacillus plantarum, using alanine racemase as a promoter probe. Applied and Environmental Microbiology, 70, 310–317.PubMedCrossRefGoogle Scholar
  7. De Angelis, M., Mariotti, L., Rossi, J., Servili, M., Fox, P. F., Rollan, G., et al. (2002). Arginine catabolism by sourdough lactic acid bacteria: purification and characterization of the arginine deiminase pathway enzymes from Lactobacillus sanfranciscensis CB1. Applied and Environmental Microbiology, 68, 6193–6201.PubMedCrossRefGoogle Scholar
  8. de Vos, W. M., Bron, P. A., & Kleerebezem, M. (2004). Post-genomics of lactic acid bacteria and other food-grade bacteria to discover gut functionality. Current Opinion in Biotechnology, 15, 86–93.PubMedCrossRefGoogle Scholar
  9. Elli, M., Zink, R., Reniero, R., & Morelli, L. (1999). Growth requirements of Lactobacillus johnsonii in skim and UHT milk. International Dairy Journal, 9, 507–513.CrossRefGoogle Scholar
  10. Greene, J. D., & Klaenhammer, T. R. (1994). Factors involved in adherence of lactobacilli to human Caco-2 cells. Applied and Environmental Microbiology, 60, 4487–4494.PubMedGoogle Scholar
  11. Hanniffy, S., Wiedermann, U., Repa, A., Mercenier, A., Daniel, C., Fioramonti, J., et al. (2004). Potential and opportunities for use of recombinant lactic acid bacteria in human health. Advances in Applied Microbiology, 56, 1–64.PubMedCrossRefGoogle Scholar
  12. Hirayama, K., & Rafter, J. (2000). The role of probiotic bacteria in cancer prevention. Microbes Infect, 2, 681–686.PubMedCrossRefGoogle Scholar
  13. Holzapfel, W. H. (2006). Introduction to prebiotics and probiotics (pp. 1–33). LLC: Taylor & Francis Group.Google Scholar
  14. Holzapfel, W. H., Haberer, P., Snel, J., Schillinger, U., & Huis in't Veld, J.H. (1998). Overview of gut flora and probiotics. International Journal of Food Microbiology, 41, 85–101.PubMedCrossRefGoogle Scholar
  15. Kanehisa, M., & Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27–30.PubMedCrossRefGoogle Scholar
  16. Laparra, J. M., & Sanz, Y. (2010). Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacological Research, 61, 219–225.PubMedCrossRefGoogle Scholar
  17. Lebeer, S., Vanderleyden, J., & De Keersmaecker, S. C. (2008). Genes and molecules of lactobacilli supporting probiotic action. Microbiology and Molecular Biology Reviews, 72, 728–764. Table.PubMedCrossRefGoogle Scholar
  18. Mapelli, V., Olsson, L., & Nielsen, J. (2008). Metabolic footprinting in microbiology: methods and applications in functional genomics and biotechnology. Trends in Biotechnology, 26, 490–497.PubMedCrossRefGoogle Scholar
  19. Martin, F. P., Dumas, M. E., Wang, Y., Legido-Quigley, C., Yap, I. K., Tang, H., et al. (2007). A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Syst Biol, 3, 112.PubMedCrossRefGoogle Scholar
  20. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O., & Kasper, D. L. (2005). An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell, 122, 107–118.PubMedCrossRefGoogle Scholar
  21. O’Flaherty, S., & Klaenhammer, T. R. (2010). The role and potential of probiotic bacteria in the gut, and the communication between gut microflora and gut/host. International Dairy Journal, 20, 262–268.CrossRefGoogle Scholar
  22. Pitino, I., Randazzo, C. L., Mandalari, G., Lo, C. A., Faulks, R. M., Le, M. Y., et al. (2010). Survival of Lactobacillus rhamnosus strains in the upper gastrointestinal tract. Food Microbiol, 27, 1121–1127.PubMedCrossRefGoogle Scholar
  23. Popov, V. N., Moskalev, E. A., Shevchenko, M. I., & Eprintsev, A. T. (2005). Comparative analysis of the glyoxylate cycle clue enzyme isocitrate lyases from organisms of different systemic groups. Zhurnal Evoliutsionnoi Biokhimii i Fiziologii, 41, 507–513.PubMedGoogle Scholar
  24. Rafter, J. (2003). Probiotics and colon cancer. Best Practice & Research Clinical Gastroenterology, 17, 849–859.CrossRefGoogle Scholar
  25. Sanders, M. E., & Klaenhammer, T. R. (2001). Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. Journal of Dairy Science, 84, 319–331.PubMedCrossRefGoogle Scholar
  26. Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444, 1027–1031.PubMedCrossRefGoogle Scholar
  27. van de Guchte, M., Serror, P., Chervaux, C., Smokvina, T., Ehrlich, S. D., & Maguin, E. (2002). Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek, 82, 187–216.PubMedCrossRefGoogle Scholar
  28. van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics, 7, 142.PubMedCrossRefGoogle Scholar
  29. Villas-Boas, S. G., Roessner, U., Hansen, M. A. E., Smedsgaard, J., & Nielsen, J. (2007). Metabolome analysis, an introduction. Hoboken, New Jersey: Wiley.Google Scholar
  30. Warberg, J. (2001). Human Fysiologi Lyngby. Denmark: Polyteknisk Forlag.Google Scholar
  31. Watanabe, M., Murakami, M., Nakao, K., Asahara, T., Nomoto, K., & Tsunoda, A. (2010). Randomized clinical trial of the influence of mechanical bowel preparation on faecal microflora in patients undergoing colonic cancer resection. British Journal of Surgery, 97, 1791–1797.PubMedCrossRefGoogle Scholar
  32. Wikoff, W. R., Anfora, A. T., Liu, J., Schultz, P. G., Lesley, S. A., Peters, E. C., et al. (2009). Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences USA, 106, 3698–3703.CrossRefGoogle Scholar
  33. Wishart, D. S., Knox, C., Guo, A. C., Eisner, R., Young, N., Gautam, B., et al. (2009). HMDB: A knowledgebase for the human metabolome. Nucleic Acids Research, 37, D603–D610.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Karolina Sulek
    • 1
  • Henrik Lauritz Frandsen
    • 2
  • Jørn Smedsgaard
    • 2
  • Thomas Hjort Skov
    • 3
  • Andrea Wilcks
    • 1
  • Tine Rask Licht
    • 1
  1. 1.Division of Microbiology and Risk Assessment, DTU FoodTechnical University of DenmarkSøborgDenmark
  2. 2.Division of Food Chemistry, DTU FoodTechnical University of DenmarkSøborgDenmark
  3. 3.Division of Quality and Technology, Department of Food Science, Faculty of Life SciencesUniversity of CopenhagenFrederiksberg-CDenmark

Personalised recommendations