, Volume 8, Issue 1, pp 133–142 | Cite as

Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics

  • Werner Römisch-Margl
  • Cornelia Prehn
  • Ralf Bogumil
  • Cornelia Röhring
  • Karsten Suhre
  • Jerzy AdamskiEmail author
Original Article


Reproducible quantification of metabolites in tissue samples is of high importance for characterization of animal models and identification of metabolic changes that occur in different tissue types in specific diseases. However, the extraction of metabolites from tissue is often the most labor-intensive and error-prone step in metabolomics studies. Here, we report the development of a standardized high-throughput method for rapid and reproducible extraction of metabolites from multiple tissue samples from different organs of several species. The method involves a bead-based homogenizer in combination with a simple extraction protocol and is compatible with state-of-the-art metabolomics kit technology for quantitative and targeted flow injection tandem mass spectrometry. We analyzed different extraction solvents for both reproducibility as well as suppression effects for a range of different animal tissue types including liver, kidney, muscle, brain, and fat tissue from mouse and bovine. In this study, we show that for most metabolites a simple methanolic extraction is best suited for reliable results. An additional extraction step with phosphate buffer can be used to improve the extraction yields for a few more polar metabolites. We provide a verified tissue extraction setup to be used with different indications. Our results demonstrate that this high-throughput procedure provides a basis for metabolomic assays with a wide spectrum of metabolites. The developed method can be used for tissue extraction setup for different indications like studies of metabolic syndrome, obesity, diabetes or cardiovascular disorders and nutrient transformation in livestock.


Mass spectrometry Tissue extraction High-throughput Quantification Complex diseases Food quality 



We thank Dr. Christa Kühn from the Leibniz Institute for Farm Animal Biology (Dummerstorf, Germany) for bovine tissue samples. We thank Gabriele Zieglmeier for mouse tissue preparations, and Tamara Halex and Arsin Sabunchi for the excellent assistance in metabolomic assays. We are thankful to Dr. Gabriele Möller and Dr. Michael Urban for their advice in experimental design and tissue homogenization procedures. This study was supported in part by a grant from the German Federal Ministry of Education and Research (BMBF) to the German Center Diabetes Research (DZD e.V.) and to the research project Greifswald Approach to Individualized Medicine (GANI_MED).

Supplementary material

11306_2011_293_MOESM1_ESM.doc (39 kb)
Supplementary material 1 (DOC 39 kb)
11306_2011_293_MOESM2_ESM.doc (362 kb)
Supplementary material 2 (DOC 362 kb)
11306_2011_293_MOESM3_ESM.doc (62 kb)
Supplementary material 3 (DOC 62 kb)
11306_2011_293_MOESM4_ESM.doc (284 kb)
Supplementary material 4 (DOC 283 kb)
11306_2011_293_MOESM5_ESM.eps (1.2 mb)
Supplementary Fig. 1. Histograms of metabolite CVs. Data are depicting the distribution of metabolite CVs for repeated homogenization (= CV over three average concentrations from each homogenization) and repeated measurement (= average over the CVs from three measured wells belonging to one homogenization) in the three tissue types as indicated. (EPS 1179 kb)


  1. Altmaier, E., Kastenmüller, G., Römisch-Margl, W., Thorand, B., Weinberger, K. M., Adamski, J., et al. (2009). Variation in the human lipidome associated with coffee consumption as revealed by quantitative targeted metabolomics. Molecular Nutrition & Food Research, 53, 1357–1365.CrossRefGoogle Scholar
  2. Altmaier, E., Ramsay, S. L., Graber, A., Mewes, H. W., Weinberger, K. M., & Suhre, K. (2008). Bioinformatics analysis of targeted metabolomics—Uncovering old and new tales of diabetic mice under medication. Endocrinology, 149, 3478–3489.PubMedCrossRefGoogle Scholar
  3. Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.PubMedCrossRefGoogle Scholar
  4. Bogumil, R., Koal, T., Weinberger, K. M., & Dammeier, S. (2008). Massenspektrometrische Analyse von Blutplasma im Kitformat. Laborwelt, 2, 17–23.Google Scholar
  5. Denkert, C., Budczies, J., Weichert, W., Wohlgemuth, G., Scholz, M., Kind, T., et al. (2008). Metabolite profiling of human colon carcinoma—Deregulation of TCA cycle and amino acid turnover. Molecular Cancer, 7, 72.PubMedCrossRefGoogle Scholar
  6. Deprez, S., Sweatman, B. C., Connor, S. C., Haselden, J. N., & Waterfield, C. J. (2002). Optimisation of collection, storage and preparation of rat plasma for 1H NMR spectroscopic analysis in toxicology studies to determine inherent variation in biochemical profiles. Journal of Pharmaceutical and Biomedical Analysis, 30, 1297–1310.PubMedCrossRefGoogle Scholar
  7. Fahy, E., Sud, M., Cotter, D., & Subramaniam, S. (2007). LIPID MAPS online tools for lipid research. Nucleic Acids Research, 35, W606–W612.PubMedCrossRefGoogle Scholar
  8. Fiedler, G. M., Baumann, S., Leichtle, A., Oltmann, A., Kase, J., Thiery, J., et al. (2007). Standardized peptidome profiling of human urine by magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clinical Chemistry, 53, 421–428.PubMedCrossRefGoogle Scholar
  9. Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal Biological Chemistry, 226, 497–509.Google Scholar
  10. Freedman, D. M., Chang, S. C., Falk, R. T., Purdue, M. P., Huang, W. Y., McCarty, C. A., et al. (2008). Serum levels of vitamin D metabolites and breast cancer risk in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiology, Biomarkers and Prevention, 17, 889–894.PubMedCrossRefGoogle Scholar
  11. Fuchs, H., Gailus-Durner, V., Adler, T., Pimentel, J. A., Becker, L., Bolle, I., et al. (2009). The German mouse clinic: A platform for systemic phenotype analysis of mouse models. Current Pharmaceutical Biotechnology, 10, 236–243.PubMedCrossRefGoogle Scholar
  12. Gailus-Durner, V., Fuchs, H., Adler, T., Aguilar Pimentel, A., Becker, L., Bolle, I., et al. (2009). Systemic first-line phenotyping. Methods in Molecular Biology, 530, 463–509.PubMedCrossRefGoogle Scholar
  13. Gieger, C., Geistlinger, L., Altmaier, E., Hrabe de Angelis, M., Kronenberg, F., Meitinger, T., et al. (2008). Genetics meets metabolomics: A genome-wide association study of metabolite profiles in human serum. PLoS Genetics, 4, e1000282.PubMedCrossRefGoogle Scholar
  14. Griffin, J. L., & Kauppinen, R. A. (2007). A metabolomics perspective of human brain tumours. FEBS Journal, 274, 1132–1139.PubMedCrossRefGoogle Scholar
  15. Griffin, J. L., & Nicholls, A. W. (2006). Metabolomics as a functional genomic tool for understanding lipid dysfunction in diabetes, obesity and related disorders. Pharmacogenomics, 7, 1095–1107.PubMedCrossRefGoogle Scholar
  16. Hettick, J. M., Green, B. J., Buskirk, A. D., Kashon, M. L., Slaven, J. E., Janotka, E., et al. (2008). Discrimination of Aspergillus isolates at the species and strain level by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprinting. Analytical Biochemistry, 380, 276–281.PubMedCrossRefGoogle Scholar
  17. Illig, T., Gieger, C., Zhai, G., Römisch-Margl, W., Wang-Sattler, R., Prehn, C., et al. (2010). A genome-wide perspective of genetic variation in human metabolism. Nature Genetics, 42, 137–141.PubMedCrossRefGoogle Scholar
  18. Koal, T., & Deigner, H. P. (2010). Challenges in mass spectrometry based targeted metabolomics. Current Molecular Medicine, 10, 216–226.PubMedCrossRefGoogle Scholar
  19. Kratzsch, J. & Ceglarek, U. (2010). Preclinical challenges in steroid analysis of human samples. Journal of Steroid Biochemistry and Molecular Biology, in press.Google Scholar
  20. Kühn, C., Bellmann, O., Voigt, J., Wegner, J., Guiard, V., & Ender, K. (2002). An experimental approach for studying the genetic and physiological background of nutrient transformation in cattle with respect to nutrient secretion and accretion type. Archives Animal Breeding, 45, 317–330.Google Scholar
  21. Saloniemi, T., Welsh, M., Lamminen, T., Saunders, P., Makela, S., Streng, T., et al. (2009). Human HSD17B1 expression masculinizes transgenic female mice. Molecular and Cellular Endocrinology, 301, 163–168.PubMedCrossRefGoogle Scholar
  22. Sreekumar, A., Poisson, L. M., Rajendiran, T. M., Khan, A. P., Cao, Q., Yu, J., et al. (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 457, 910–914.PubMedCrossRefGoogle Scholar
  23. Stephens, F. B., Constantin-Teodosiu, D., & Greenhaff, P. L. (2007). New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle. Journal of Physiology, 581, 431–444.PubMedCrossRefGoogle Scholar
  24. Urban, M., Enot, D. P., Dallmann, G., Korner, L., Forcher, V., Enoh, P., et al. (2010). Complexity and pitfalls of mass spectrometry-based targeted metabolomics in brain research. Analytical Biochemistry, 406, 124–131.PubMedCrossRefGoogle Scholar
  25. U.S. Department of Health and Human Services, F. a. D. A., Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM) (2001). Guidance for Industry. Bioanalytical Method Validation.Google Scholar
  26. Verollet, R. (2008). A major step towards efficient sample preparation with bead-beating. Biotechniques, 44, 832–833.PubMedCrossRefGoogle Scholar
  27. Wang-Sattler, R., Yu, Y., Mittelstrass, K., Lattka, E., Altmaier, E., Gieger, C., et al. (2008). Metabolic profiling reveals distinct variations linked to nicotine consumption in humans—First results from the KORA study. PLoS ONE, 3, e3863.PubMedCrossRefGoogle Scholar
  28. Weikard, R., Altmaier, E., Suhre, K., Weinberger, K. M., Hammon, H. M., Albrecht, E., et al. (2010). Metabolomic profiles indicate distinct physiological pathways affected by two loci with major divergent effect on Bos taurus growth and lipid deposition. Physiological Genomics, 42A, 79–88.PubMedCrossRefGoogle Scholar
  29. Wu, H., Southam, A. D., Hines, A., & Viant, M. R. (2008). High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Analytical Biochemistry, 372, 204–212.PubMedCrossRefGoogle Scholar
  30. Zhai, G., Wang-Sattler, R., Hart, D. J., Arden, N. K., Hakim, A. J., Illig, T., et al. (2009). Serum branched-chain amino acid to histidine ratio: A novel metabolomic biomarker of knee osteoarthritis. Annals of the Rheumatic Diseases, 69, 1227–1231.CrossRefGoogle Scholar
  31. Zivkovic, A. M., Wiest, M. M., Nguyen, U. T., Davis, R., Watkins, S. M., & German, J. B. (2009). Effects of sample handling and storage on quantitative lipid analysis in human serum. Metabolomics, 5, 507–516.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Werner Römisch-Margl
    • 1
  • Cornelia Prehn
    • 2
  • Ralf Bogumil
    • 3
  • Cornelia Röhring
    • 3
  • Karsten Suhre
    • 1
    • 4
  • Jerzy Adamski
    • 2
    • 5
    Email author
  1. 1.Helmholtz Zentrum München, Institute of Bioinformatics and Systems BiologyGerman Research Center for Environmental HealthNeuherbergGermany
  2. 2.Helmholtz Zentrum München, Institute of Experimental Genetics, Genome Analysis CenterGerman Research Center for Environmental HealthNeuherbergGermany
  3. 3.BIOCRATES Life Sciences AGInnsbruckAustria
  4. 4.Faculty of Biology, Ludwig-Maximilians-UniversitätMunichGermany
  5. 5.Lehrstuhl für Experimentelle Genetik, Technische Universität MünchenFreising-WeihenstephanGermany

Personalised recommendations