Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Profiling of the charged metabolites of traditional herbal medicines using capillary electrophoresis time-of-flight mass spectrometry

  • 572 Accesses

  • 15 Citations


The quantification of a small number of bioactive components in herbal medicines is often inadequate when attempting to elucidate a medicine’s biological effects. Despite rapid advances in analytical technologies, obtaining comprehensive metabolomic profiles of herbal medicines remains difficult, due to the complexity of natural product mixtures. Toki-Shakuyaku-San is a Chinese medicine used widely to treat gynecological and obstetric disorders, such as infertility, dysmenorrhea, toxemia during pregnancy and neural dysfunction. It consists of Angelica acutiloba Radix (Toki), Cnidium officinale Rhizoma (Senkyu), Paeonia lactiflora Radix (Shakuyaku), Atractylodes lancea Rhizoma (Sojutsu), Alisma orientale Rhizoma (Takusha) and Poria cocos Hoelen (Bukuryo). To elucidate the composition of these herbal medicines individually, we conducted non-targeted profiling analyses of extracts of these herbs using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS), which allows the simultaneous quantification of hundreds of charged metabolites. In total, 737 ± 183.1 (average ± SD) metabolite-derived features were observed, and of these, 119 metabolites were identified. Score plots of principal component analysis (PCA) showed a clear cluster including Shakuyaku, Bukuryo, and Sojutsu, while the other three herbs were distributed over PCA spaces. Loading plots revealed that amino acids and shikimate-derived alkaloids were the predominant metabolite constituents. Hierarchical clustering analysis revealed that few clusters overlapped in the herbal medicines tested. This report is the first demonstration of the characterization of a herbal medicine using large-scale metabolomic analysis, which is complementary to traditional quality control methods.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. Akase, T., Onodera, S., Matsushita, R., & Tashiro, S. (2004). A comparative study of laboratory parameters and symptoms effected by Toki-Shakuyaku-San and an iron preparation in rats with iron-deficiency anemia. Biological and Pharmaceutical Bulletin, 27, 871–878.

  2. Bohrmann, H., Stahl, E., & Mitsuhashi, H. (1967). Studies of the constituents of umbelliferae plants. 8. Chromatographic studies on the constituents of Cnidium officinale Makino. Chemical and Pharmaceutical Bulletin, 15, 1606–1608.

  3. Brown, M., Dunn, W. B., Dobson, P., et al. (2009). Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics. Analyst, 134, 1322–1332.

  4. Calixto, J. B. (2000). Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Brazilian Journal of Medical and Biological Research, 33, 179–189.

  5. Chan, K. (2003). Some aspects of toxic contaminants in herbal medicines. Chemosphere, 52, 1361–1371.

  6. Chan, E. C., Yap, S. L., Lau, A. J., Leow, P. C., Toh, D. F., & Koh, H. L. (2007). Ultra-performance liquid chromatography/time-of-flight mass spectrometry based metabolomics of raw and steamed Panax notoginseng. Rapid Communications in Mass Spectrometry, 21, 519–528.

  7. Cheever, K. L., Richards, D. E., & Plotnick, H. B. (1982). The acute oral toxicity of isomeric monobutylamines in the adult male and female rat. Toxicology and Applied Pharmacology, 63, 150–152.

  8. Chen, L., Qi, J., Chang, Y. X., Zhu, D., & Yu, B. (2009). Identification and determination of the major constituents in Traditional Chinese Medicinal formula Danggui-Shaoyao-San by HPLC-DAD-ESI-MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 50, 127–137.

  9. Daly, J. W. (2007). Caffeine analogs: Biomedical impact. Cellular and Molecular Life Sciences, 64, 2153–2169.

  10. Ganzera, M. (2008). Quality control of herbal medicines by capillary electrophoresis: Potential, requirements and applications. Electrophoresis, 29, 3489–3503.

  11. Gong, F., Liang, Y. Z., Cui, H., Chau, F. T., & Chan, B. T. (2001). Determination of volatile components in peptic powder by gas chromatography-mass spectrometry and chemometric resolution. Journal of Chromatography A, 909, 237–247.

  12. Hatip-Al-Khatib, I., Egashira, N., Mishima, K., et al. (2004). Determination of the effectiveness of components of the herbal medicine Toki-Shakuyaku-San and fractions of Angelica acutiloba in improving the scopolamine-induced impairment of rat’s spatial cognition in eight-armed radial maze test. Journal of Pharmacological Sciences, 96, 33–41.

  13. He, C. N., Peng, Y., Xu, L. J., et al. (2010). Three new oligostilbenes from the seeds of Paeonia suffruticosa. Chemical and Pharmaceutical Bulletin, 58, 843–847.

  14. Hurtado-Fernandez, E., Gomez-Romero, M., Carrasco-Pancorbo, A., & Fernandez-Gutierrez, A. (2010). Application and potential of capillary electroseparation methods to determine antioxidant phenolic compounds from plant food material. Journal of Pharmaceutical and Biomedical Analysis, 53, 1130–1160.

  15. Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., & Hirakawa, M. (2010). KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Research, 38, D355–D360.

  16. Kim, M. R., Abd El-Aty, A. M., Choi, J. H., Lee, K. B., & Shim, J. H. (2006). Identification of volatile components in Angelica species using supercritical-CO2 fluid extraction and solid phase microextraction coupled to gas chromatography-mass spectrometry. Biomedical Chromatography, 20, 1267–1273.

  17. Kitajima, J., Kamoshita, A., Ishikawa, T., et al. (2003). Glycosides of Atractylodes lancea. Chemical and Pharmaceutical Bulletin, 51, 673–678.

  18. Kono, N., Arakawa, K., Ogawa, R., et al. (2009). Pathway projector: Web-based zoomable pathway browser using KEGG atlas and Google Maps API. PLoS One, 4, e7710.

  19. Lao, Y. M., Jiang, J. G., & Yan, L. (2009). Application of metabonomic analytical techniques in the modernization and toxicology research of traditional Chinese medicine. British Journal of Pharmacology, 157, 1128–1141.

  20. Li, X. N., Cui, H., Song, Y. Q., Liang, Y. Z., & Chau, F. T. (2003). Analysis of volatile fractions of Schisandra chinensis (Turcz.) Baill. using GC–MS and chemometric resolution. Phytochemical Analysis, 14, 23–33.

  21. Liang, X. M., Jin, Y., Wang, Y. P., Jin, G. W., Fu, Q., & Xiao, Y. S. (2009). Qualitative and quantitative analysis in quality control of traditional Chinese medicines. Journal of Chromatography A, 1216, 2033–2044.

  22. Liao, J. F., Jan, Y. M., Huang, S. Y., Wang, H. H., Yu, L. L., & Chen, C. F. (1995). Evaluation with receptor binding assay on the water extracts of ten CNS-active Chinese herbal drugs. Proceedings of the National Science Council, Republic of China. Part B, Life Sciences, 19, 151–158.

  23. Liu, S., Yi, L. Z., & Liang, Y. Z. (2008). Traditional Chinese medicine and separation science. Journal of Separation Science, 31, 2113–2137.

  24. Lu, G. H., Chan, K., Liang, Y. Z., et al. (2005). Development of high-performance liquid chromatographic fingerprints for distinguishing Chinese Angelica from related umbelliferae herbs. Journal of Chromatography A, 1073, 383–392.

  25. Ma, C. M., Winsor, L., & Daneshtalab, M. (2007). Quantification of spiroether isomers and herniarin of different parts of Matricaria matricarioides and flowers of Chamaemelum nobile. Phytochemical Analysis, 18, 42–49.

  26. Miller, F. G., Emanuel, E. J., Rosenstein, D. L., & Straus, S. E. (2004). Ethical issues concerning research in complementary and alternative medicine. JAMA, 291, 599–604.

  27. Monteith, D. K., Emmerling, M. R., Garvin, J., & Theiss, J. C. (1996). Cytotoxicity study of tacrine, structurally and pharmacologically related compounds using rat hepatocytes. Drug and Chemical Toxicology, 19, 71–84.

  28. Monton, M. R., & Soga, T. (2007). Metabolome analysis by capillary electrophoresis–mass spectrometry. Journal of Chromatography A, 1168, 237–246. discussion 236.

  29. Murray, R. H., & Rubel, A. J. (1992). Physicians and healers—Unwitting partners in health care. New England Journal of Medicine, 326, 61–64.

  30. Namba, T., & Tsuda, Y. (1998). Shoyakugakugairon (3rd ed.). Tokyo: Nankodo.

  31. Ohta, H., Ni, J. W., Matsumoto, K., Watanabe, H., & Shimizu, M. (1993). Peony and its major constituent, paeoniflorin, improve radial maze performance impaired by scopolamine in rats. Pharmacology, Biochemistry and Behavior, 45, 719–723.

  32. Ren, M. T., Chen, J., Song, Y., Sheng, L. S., Li, P., & Qi, L. W. (2008). Identification and quantification of 32 bioactive compounds in Lonicera species by high performance liquid chromatography coupled with time-of-flight mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 48, 1351–1360.

  33. Saeed, A. I., Bhagabati, N. K., Braisted, J. C., et al. (2006). TM4 microarray software suite. Methods in Enzymology, 411, 134–193.

  34. Sato, S., Soga, T., Nishioka, T., & Tomita, M. (2004). Simultaneous determination of the main metabolites in rice leaves using capillary electrophoresis mass spectrometry and capillary electrophoresis diode array detection. The Plant Journal, 40, 151–163.

  35. Smyth, D. D., & Penner, S. B. (1995). Renal I1-imidazoline receptor-selective compounds mediate natriuresis in the rat. Journal of Cardiovascular Pharmacology, 26(Suppl. 2), S63–S67.

  36. Soga, T., Baran, R., Suematsu, M., et al. (2006). Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. The Journal of Biological Chemistry, 281, 16768–16776.

  37. Soga, T., Ohashi, Y., Ueno, Y., Naraoka, H., Tomita, M., & Nishioka, T. (2003). Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. Journal of Proteome Research, 2, 488–494.

  38. Sugimoto, M., Koseki, T., Hirayama, A., et al. (2010a). Correlation between sensory evaluation scores of Japanese sake and metabolome profiles. Journal of Agriculture and Food Chemistry, 58, 374–383.

  39. Sugimoto, M., Wong, D. T., Hirayama, A., Soga, T., & Tomita, M. (2010b). Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics, 6, 78–95.

  40. Wambach, G., & Casals-Stenzel, J. (1983). Structure-activity relationship of new steroidal aldosterone antagonists. Comparison of the affinity for mineralocorticoid receptors in vitro and the antialdosterone activity in vivo. Biochemical Pharmacology, 32, 1479–1485.

  41. Wang, H. X., Liu, C. M., Liu, Q., & Gao, K. (2008). Three types of sesquiterpenes from rhizomes of Atractylodes lancea. Phytochemistry, 69, 2088–2094.

  42. Wang, Y., Liu, H., Mckenzie, G., et al. (2010). Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nature Medicine, 16, 279–285.

  43. Wang, Z. G., & Ren, J. (2002). Current status and future direction of Chinese herbal medicine. Trends in Pharmacological Sciences, 23, 347–348.

  44. Wang, J., Van Der Heijden, R., Spruit, S., et al. (2009). Quality and safety of Chinese herbal medicines guided by a systems biology perspective. Journal of Ethnopharmacology, 126, 31–41.

  45. Wang, Y., Zhang, M., Ruan, D., et al. (2004). Chemical components and molecular mass of six polysaccharides isolated from the sclerotium of Poria cocos. Carbohydrate Research, 339, 327–334.

  46. Weng, Q., & Jin, W. (2002). Carbon fiber bundle–Au–Hg dual-electrode detection for capillary electrophoresis. Journal of Chromatography A, 971, 217–223.

  47. Xie, G., Plumb, R., Su, M., et al. (2008). Ultra-performance LC/TOF MS analysis of medicinal Panax herbs for metabolomic research. Journal of Separation Science, 31, 1015–1026.

  48. Yi, T., Leung, K. S., Lu, G. H., & Zhang, H. (2007). Comparative analysis of Ligusticum chuanxiong and related umbelliferous medicinal plants by high performance liquid chromatography–electrospray ionization mass spectrometry. Planta Medica, 73, 392–398.

  49. Zhang, A., Sun, H., Wang, Z., Sun, W., Wang, P., & Wang, X. (2010). Metabolomics: Towards understanding traditional Chinese medicine. Planta Medica, 76, 2026–2035.

  50. Zhao, M., Xu, L. J., & Che, C. T. (2008). Alisolide, alisols O and P from the rhizome of Alisma orientale. Phytochemistry, 69, 527–532.

  51. Zhu, Y. Y., Zhu-Ge, Z. B., Wu, D. C., et al. (2007). Carnosine inhibits pentylenetetrazol-induced seizures by histaminergic mechanisms in histidine decarboxylase knock-out mice. Neuroscience Letters, 416, 211–216.

Download references


This work was supported by research funds from the Yamagata Prefectural Government and the city of Tsuruoka. We thank Dr. Kazuko Otomo for technical assistance, and Wanjun Kong and Guo Jing for fruitful discussions.

Author information

Correspondence to Masahiro Sugimoto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1,259 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iino, K., Sugimoto, M., Soga, T. et al. Profiling of the charged metabolites of traditional herbal medicines using capillary electrophoresis time-of-flight mass spectrometry. Metabolomics 8, 99–108 (2012). https://doi.org/10.1007/s11306-011-0290-7

Download citation


  • Capillary electrophoresis time-of-flight mass spectrometry
  • Herbal medicine
  • Charged metabolite
  • Metabolomic profiling