, Volume 7, Issue 4, pp 524–535 | Cite as

Fate of 13C in metabolic pathways and effects of high CO2 on the alteration of metabolites in Rumex obtusifolius L.

  • Atsuko Miyagi
  • Kentaro Takahara
  • Ichiro Kasajima
  • Hideyuki Takahashi
  • Maki Kawai-Yamada
  • Hirofumi UchimiyaEmail author
Original Article


In present study, in vivo turn-over of 13CO2 to organic acids such as oxalate and citrate in Rumex obtusifolius L. was explored. Conversion of fixed carbon to oxalate was studies using “new leaves”, i.e., leaves removed from 2-month-old-plants grown under different environmental conditions. Collected new leaves and stems were subjected to metabolomic analyses using capillary electrophoresis mass spectrometry. The results showed the mobilization of metabolites from stems to new leaves, where active TCA cycle and oxalate pathways occurred. The 13C labeling experiments also indicated that these pathways are active in new leaves. Subsequently, we compared the effects of high carbon dioxide level (1000 ppm) and nutrients (Hoagland’s formulation) on the metabolite accumulation in R. obtusifolius. Data analysed by both principal component and hierarchical clustering analyses revealed significant changes in metabolite accumulation. The accumulation of most abundant metabolite oxalate in leaves was affected by both high CO2 as the carbon source and nutrients. We suggest that the common weed R. obtusifolius may proliferate in cultivated lands under high CO2 level, a potential cause of global warming.


Rumex obtusifolius Oxalate Citrate Stable isotope 13High CO2 Nutrients Capillary electrophoresis mass spectrometry 



Advice in editing this manuscript by Dr. S. M. Uchimiya is appreciated. This research was supported by a grant from the Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry (BRAIN), the CREST, JST, Japan, and a grand from MEXT, Japan.

Supplementary material

11306_2010_272_MOESM1_ESM.doc (24 kb)
Supplementary material 1 (DOC 23 kb)
11306_2010_272_MOESM2_ESM.ppt (91 kb)
Supplementary material 1 (PPT 91 kb)


  1. Cavers, P. B., & Harper, J. L. (1964). Rumex obtusifolius L. and R. crispus L. Journal of Ecology, 52, 737–766.CrossRefGoogle Scholar
  2. Foyer, C. H., Vanacker, H., Gomez, L. D., & Harbinson, J. (2002). Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures: Review. Plant Physiology and Biochemistry, 40, 659–668.CrossRefGoogle Scholar
  3. Guy, C., Kaplan, F., Kopka, J., Selbig, J., & Hincha, D. K. (2008). Metabolomics of temperature stress. Physiologia Plantarum, 132, 220–235.PubMedGoogle Scholar
  4. Högy, P., Keck, M., Niehous, K., Franzaring, J., & Fangmeier, A. (2010). Effects of atmospheric CO2 enrichment on biomass, yield and low molecular weight metabolites in wheat grain. Journal of Cereal Science, 52, 215–220.CrossRefGoogle Scholar
  5. Holm, L. G., Plucknett, D. L., Pancho, J. V., & Herberger, J. P. (1977). Rumex crispus and Rumex obtusifolius. In L. G. Holm (Ed.), The world’s worst weeds: Distribution and biology (pp. 401–408). Honolulu: University Press of Hawaii.Google Scholar
  6. Hongo, A. (1986). Infestation of Rumex obtusifolius L., distribution pattern of its individual plants in sown grasslands in eastern Hokkaido. Weed Research, Japan, 31, 300–315.Google Scholar
  7. Hongo, A. (1989). Survival and growth of seedling of Rumex obtusifolius L. & Rumex crispus L. in newly sown grassland. Weed Research, 29, 7–12.CrossRefGoogle Scholar
  8. Huege, J., Sulpice, R., Gibon, Y., Lisec, J., Koehl, K., & Kopka, J. (2007). GC–EI–TOF–MS analysis of in vivo carbon-partitioning into soluble metabolite pools of higher plants by monitoring isotope dilution after 13CO2 labelling. Phytochemistry, 68, 2258–2272.PubMedCrossRefGoogle Scholar
  9. Kaplan, F., Kopka, J., Haskell, D. W., Zhao, W., Cameron Schiller, K., Gatzke, N., et al. (2004). Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiology, 136, 4159–4168.PubMedCrossRefGoogle Scholar
  10. Kim, T. H., Takebe, M., Engelaar, W. M. H. G., Kim, H. Y., & Yoneyama, T. (2002). Interaction between assimilations of fixed carbon and newly absorbed nitrate estimated by 13C and 15N tracing in intact spinach. Journal of Plant Nutrition, 25, 1527–1547.CrossRefGoogle Scholar
  11. Li, P., Ainsworth, E. A., Leakey, A. D. B., Ulanov, A., Lozovaya, V., Ort, D. R., et al. (2008). Arabidopsis transcript and metabolite profiles: Ecotype-specific responses to open-air elevated CO2. Plant, Cell and Environment, 31, 1637–1687.Google Scholar
  12. Long, S. P., Ainswirth, E. A., Leakey, A. D. B., Nösberger, J., & Ort, D. R. (2006). Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Science, 312, 1918–1921.PubMedCrossRefGoogle Scholar
  13. Löve, A., & Kapoor, B. M. (1967). A chromosome atlas of the collective genus Rumex. Cytologia, 32, 328–342.CrossRefGoogle Scholar
  14. Makuchi, T., & Sakai, H. (1984). Seedling survival and flowering of Rumex obtusifolius L. in various habitats. Weed Research, Japan, 29, 123–130.Google Scholar
  15. Miyagi, A., Takahashi, H., Takahara, K., Hirabayashi, T., Nishimura, Y., Tezuka, T., et al. (2010a). Principal component and hierarchical clustering analysis of metabolites in destructive weeds; polygonaceous plants. Metabolomics, 6, 146–155.CrossRefGoogle Scholar
  16. Miyagi, A., Takahara, K., Takahashi, H., Kawai-Yamada, M., & Uchimiya, H. (2010b). Targeted metabolomics in an intrusive weed, Rumex obtusifolius L., grown under different environmental conditions reveals alterations of organ related metabolite pathway. Metabolomics, 6, 497–510.CrossRefGoogle Scholar
  17. Oikawa, S., Miyagi, K. M., Hikosaka, K., Okada, M., Matsunami, T., Kokubun, M., et al. (2010). Interactions between elevated CO2 and N2-fixation determine soybean yield—a test using a non-nodulated mutant. Plant and Soil, 330, 163–172.CrossRefGoogle Scholar
  18. Onoda, Y., Hirose, T., & Hikosaka, K. (2007). Effect of elevated CO2 levels on leaf starch, nitrogen and photosynthesis of plants growing at three natural springs in Japan. Ecological Research, 22, 475–484.CrossRefGoogle Scholar
  19. Pino, J., Haggar, R. J., Sans, F. X., Masalles, R. M., Hamilton, R. N. S., & Sackville-Hamilton, R. N. (1995). Clonal growth and fragment regeneration of Rumex obtusifolius L. Weed Research, 35, 141–148.CrossRefGoogle Scholar
  20. Raven, J. A., Griffiths, H., Glidewell, S. M., & Preston, T. (1982). The mechanism of oxalate biosynthesis in higher plants: Investigating with the stable isotopes 18O and 13C. Proceedings of the Royal Society of London Series B, 216, 87–101.CrossRefGoogle Scholar
  21. Sanchez, D. H., Siahpoosh, M. R., Roessner, U., Udvardi, M., & Kopka, J. (2008). Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiologia Plantarum, 132, 209–219.PubMedGoogle Scholar
  22. Shulaev, V., Cortes, D., Miller, G., & Mittler, R. (2008). Metabolomics for plant stress response. Physiologia Plantarum, 132, 199–208.PubMedCrossRefGoogle Scholar
  23. Takahara, K., Kasajima, I., Takahashi, H., Hashida, S., Itami, T., Onodera, H., et al. (2010). Metabolome and photochemical analysis of rice plants overexpressing Arabidopsis NAD kinase gene. Plant Physiology, 152, 1863–1873.PubMedCrossRefGoogle Scholar
  24. Takahashi, H., Hayashi, M., Goto, F., Sato, S., Soga, T., Nishioka, T., et al. (2006a). Evaluation of metabolic alteration in transgenic rice overexpressing dihydrofavonol-4-reductase. Annals of Botany, 98, 819–825.PubMedCrossRefGoogle Scholar
  25. Takahashi, H., Takahara, K., Hashida, S., Hirabayashi, T., Fujimori, T., Kawai-Yamada, M., et al. (2009). Pleiotropic modulation of carbon and nitrogen metabolism in Arabidopsis plants overexpressing NAD kinase 2 gene. Plant Physiology, 151, 100–113.PubMedCrossRefGoogle Scholar
  26. Takahashi, H., Watanabe, A., Tanaka, A., Hashida, S., Kawai-Yamada, M., Sonoike, K., et al. (2006b). Chloroplast NAD kinase is essential for energy transduction though the xanthophylls cycle in photosynthesis. Plant and Cell Physiology, 47, 1678–1682.PubMedCrossRefGoogle Scholar
  27. Urbanczyk-Wochniak, E., Baxter, C., Kolbe, A., Kopka, J., Sweetlove, L. J., & Fernie, A. R. (2005). Profiling of diurnal patterns of metabolite and transcript abundance in potato (Solanum tuberosum) leaves. Planta, 221, 891–903.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Atsuko Miyagi
    • 1
  • Kentaro Takahara
    • 2
  • Ichiro Kasajima
    • 1
  • Hideyuki Takahashi
    • 3
  • Maki Kawai-Yamada
    • 1
    • 4
    • 5
  • Hirofumi Uchimiya
    • 1
    • 3
    Email author
  1. 1.Institute for Environmental Science and TechnologySaitama UniversitySaitama-cityJapan
  2. 2.Institute of Molecular and Cellular BiosciencesThe University of TokyoTokyoJapan
  3. 3.Iwate Biotechnology Research CenterKitakamiJapan
  4. 4.Graduate School of Science and EngineeringSaitama UniversitySaitama-cityJapan
  5. 5.Core Research for Evolutional Science and Technology (CREST)Japan Science and Technology Agency (JST)KawaguchiJapan

Personalised recommendations