, Volume 7, Issue 4, pp 457–468 | Cite as

Metabolic insights into the yeast response to propionic acid based on high resolution 1H NMR spectroscopy

  • Artur B. Lourenço
  • José R. Ascenso
  • Isabel Sá-Correia
Original Article


The experimental model Saccharomyces cerevisiae has been widely used to elucidate the molecular mechanisms behind resistance to weak acids in fungi, an essential knowledge for the development of more suitable preservation strategies. Previous studies, based on transcriptomic and chemogenomic approaches, revealed a number of yeast responses to propionic acid, widely used in the preservation of bakery and fresh dairy products. In the present work we report the metabolic changes occurring during yeast adaptation to, and growth in, the presence of this weak acid (20 mM at pH 4) using high resolution 1H NMR spectroscopy coupled with multivariate statistical analysis. The metabolic profiles highlighted the separation of propionic acid-induced lag-phase in two parts. The initial period of incubation under acid stress (up to 3 h following the inoculation of an unadapted yeast population) was characterized by a decrease of cell viability and of the average intracellular pH (pHi) values. The final part of this incubation period (from 4 to 6 h of incubation) was characterized by the start of cell division in the presence of the acid, an increase of the average pHi and a metabolic profile close to the profile exhibited by cells in the exponential phase of growth in propionic acid supplemented medium. An association between the average pHi values and the levels of glutamate and propionate during growth latency was identified. Changes in the cell content in other amino acids, ATP, NAD+, glycerol and trehalose were also registered during yeast incubation with propionic acid. These alterations are discussed in the context of the global response to this weak acid.


Saccharomyces cerevisiae Response to propionic stress Weak acids 1H NMR-based metabolomics Multivariate data analysis 



This research was supported by FEDER, Fundação para a Ciência e a Tecnologia (FCT) (PTDC/AGR-ALI/102608/2008 grant and a PhD fellowship grant to ABL/SFRH/BD/23437/2005). The Portuguese National NMR Network is acknowledged for providing us the NMR facility.


  1. Arneborg, N., Moos, M. K., & Jakobsen, M. (1997). Induction of acetic acid tolerance and trehalose accumulation by added and produced ethanol in Saccharomyces cerevisiae. Biotechnology Letters, 19, 931–933.CrossRefGoogle Scholar
  2. Blomberg, A., & Adler, L. (1992). Physiology of osmotolerance in fungi. Advances in Microbial Physiology, 33, 145–212.PubMedCrossRefGoogle Scholar
  3. Boles, E., Göhlmann, H. W., & Zimmermann, F. K. (1996). Cloning of a second gene encoding 5-phosphofructo-2-kinase in yeast, and characterization of mutant strains without fructose-2, 6-bisphosphate. Molecular Microbiology, 20, 65–76.PubMedCrossRefGoogle Scholar
  4. Carmelo, V., Santos, H., & Sá-Correia, I. (1997). Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae. Biochimica et Biophysica Acta, 1325, 63–70.PubMedCrossRefGoogle Scholar
  5. Cheng, L., Moghraby, J., & Piper, P. W. (1999). Weak organic acid treatment causes a trehalose accumulation in low-pH cultures of Saccharomyces cerevisiae, not displayed by the more preservative-resistant Zygosaccharomyces bailii. FEMS Microbiology Letters, 170, 89–95.PubMedCrossRefGoogle Scholar
  6. Cui, Q., Lewis, I. A., Hegeman, A. D., Anderson, M. E., Li, J., Schulte, C. F., et al. (2008). Metabolite identification via the Madison metabolomics consortium database. Nature Biotechnology, 26, 162.PubMedCrossRefGoogle Scholar
  7. de Koning, W., & Van Dam, K. (1992). A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Analytical Biochemistry, 204, 118–123.PubMedCrossRefGoogle Scholar
  8. Devantier, R., Scheithauer, B., Villas-Bôas, S. G., Pedersen, S., & Olsson, L. (2005). Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations. Biotechnology and Bioengineering, 90, 703–714.PubMedCrossRefGoogle Scholar
  9. Elbein, A. D., Pan, Y. T., Pastuszak, I., & Carroll, D. (2003). New insights on trehalose: a multifunctional molecule. Glycobiology, 13, 17R–27R.PubMedCrossRefGoogle Scholar
  10. Fernandes, A. R., Durão, P. J., Santos, P. M., & Sá-Correia, I. (2003). Activation and significance of vacuolar H+-ATPase in Saccharomyces cerevisiae adaptation and resistance to the herbicide 2,4-dichlorophenoxyacetic acid. Biochemical and Biophysical Research Communications, 312, 1317–1324.PubMedCrossRefGoogle Scholar
  11. Fiehn, O. (2002). Metabolomics-the link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171.PubMedCrossRefGoogle Scholar
  12. Gonzalez, B., François, J., & Renaud, M. (1997). A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast, 13, 1347–1355.PubMedCrossRefGoogle Scholar
  13. Heinisch, J. (1986). Isolation and characterization of the two structural genes coding for phosphofructokinase in yeast. Molecular Genetics and Genomics, 202, 75–82.Google Scholar
  14. Heinisch, J. J., Boles, E., & Timpel, C. (1996). A yeast phosphofructokinase insensitive to the allosteric activator fructose 2,6-bisphosphate. Glycolysis/metabolic regulation/allosteric control. Journal of Biological Chemistry, 271, 15928–15933.PubMedCrossRefGoogle Scholar
  15. Holyoak, C. D., Stratford, M., McMullin, Z., Cole, M. B., Crimmins, K., Brown, A. J. P., et al. (1996). Activity of the plasma membrane H+-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid. Applied and Environmental Microbiology, 62, 3158–3164.PubMedGoogle Scholar
  16. Imai, T., & Ohno, T. (1995). The relationship between viability and intracellular pH in the yeast Saccharomyces cerevisiae. Applied and Environmental Microbiology, 61, 3604–3608.PubMedGoogle Scholar
  17. Klionsky, D. J., Herman, P. K., & Emr, S. D. (1990). The fungal vacuole: composition, function, and biogenesis. Microbiological Reviews, 54, 266–292.PubMedGoogle Scholar
  18. Krebs, H. A., Wiggins, D., Stubbs, M., Sols, A., & Bedoya, F. (1983). Studies on the mechanism of the antifungal action of benzoate. Biochemical Journal, 214, 657–663.PubMedGoogle Scholar
  19. Kresnowati, M. T. A. P., van Winden, W. A., van Gulik, W. M., & Heijnen, J. J. (2007). Dynamic in vivo metabolome response of Saccharomyces cerevisiae to a stepwise perturbation of the ATP requirement for benzoate export. Biotechnology and Bioengineering, 99, 421–441.CrossRefGoogle Scholar
  20. Larsson, C., Nilsson, A., Blomberg, A., & Gustafsson, L. (1997). Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting. Conditions Journal of Bacteriology, 179, 7243–7250.Google Scholar
  21. Lundberg, P., Vogel, T., Malusek, A., Lundquist, P. O., Cohen, L., & Dahlqvist, O. (2005). MDL—the magnetic resonance metabolomics database ( Basel, Switzerland: ESMRMB.Google Scholar
  22. Makrantoni, V., Dennison, P., Stark, M. J., & Coote, P. J. (2007). A novel role for the yeast protein kinase Dbf2p in vacuolar H+-ATPase function and sorbic acid stress tolerance. Microbiology, 153, 4016–4026.PubMedCrossRefGoogle Scholar
  23. Mira, N. P., Lourenço, A. B., Fernandes, A. R., Becker, J. D., & Sá-Correia, I. (2009). The RIM101 pathway has a role in Saccharomyces cerevisiae adaptive response and resistance to propionic acid and other weak acids. FEMS Yeast Research, 9, 202–216.PubMedCrossRefGoogle Scholar
  24. Mira, N. P., Teixeira, M. C., & Sá-Correia, I. (2010). Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS: A Journal of Integrative Biology, 14, 525–540.CrossRefGoogle Scholar
  25. Otto, A., Przybylski, F., Nissler, K., Schellenberger, W., & Hofmann, E. (1986). Kinetic effects of fructose-1, 6-bisphosphate on yeast phosphofructokinase. Biomedicine Biochimica Acta, 45, 865–875.Google Scholar
  26. Pears, M. R., Codlin, S., Haines, R. L., White, I. J., Mortishire-Smith, R. J., Mole, S. E., et al. (2010). Deletion of btn1, an orthologue of CLN3, increases glycolysis and perturbs amino acid metabolism in the fission yeast model of Batten disease. Molecular BioSystems, 6, 1093–1102.PubMedCrossRefGoogle Scholar
  27. Piper, P., Mahé, Y., Thompson, S., Pandjaitan, R., Holyoak, C., Egner, R., et al. (1998). The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO Journal, 17, 4257–4265.PubMedCrossRefGoogle Scholar
  28. Piper, P., Ortiz-Calderon, C., Hatzixanthis, K., & Mollapour, R. M. (2001). Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology, 147, 2635–2642.PubMedGoogle Scholar
  29. Pronk, J. T., van der Linden-Beuman, A., Verduyn, C., Scheffers, W. A., & van Dijken, J. P. (1994). Propionate metabolism in Saccharomyces cerevisiae: implications for the metabolon hypothesis. Microbiology, 140, 717–722.PubMedCrossRefGoogle Scholar
  30. Pronk, J. T., Yde Steensma, H., & Van Dijken, J. P. (1996). Pyruvate metabolism in Saccharomyces cerevisiae. Yeast, 12, 1607–1633.PubMedCrossRefGoogle Scholar
  31. Roberts, C. J., Raymond, C. K., Yamashiro, K. T., & Stevens, T. H. (1991). Methods for studying the yeast vacuole. Methods in Enzymology, 194, 644–661.PubMedCrossRefGoogle Scholar
  32. Roe, A. J., Mclaggan, D., Davidson, I., O’Byrne, C., & Booth, I. R. (1995). Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. Journal of Bacteriology, 180, 767–772.Google Scholar
  33. Sá-Correia, I., Dos Santos, S. C., Teixeira, M. C., Cabrito, T. R., & Mira, N. P. (2009). Drug:H+ antiporters in chemical stress response in yeast. Trends in Microbiology, 17, 22–31.PubMedCrossRefGoogle Scholar
  34. Sá-Correia, I., Salgueiro, S. P., Viegas, C. A., & Novais, J. M. (1989). Leakage induced by ethanol, octanoic and decanoic acids in Saccharomyces cerevisiae. Yeast, Special Issue, 5, S123–S127.Google Scholar
  35. Suhr, K. I., & Nielsen, P. V. (2004). Effect of weak acid preservatives on growth of bakery product spoilage fungi at different water activities and pH values. International Journal of Food Microbiology, 95, 67–78.PubMedCrossRefGoogle Scholar
  36. Teixeira, M. C., Duque, P., & Sá-Correia, I. (2007). Environmental genomics: mechanistic insights into toxicity of and resistance to the herbicide 2,4-D. Trends in Biotechnology, 25, 363–370.PubMedCrossRefGoogle Scholar
  37. Viegas, A. C., Almeida, P. F., Cavaco, M., & Sá-Correia, I. (1998). The H+-ATPase in the plasma membrane of Saccharomyces cerevisiae is activated during growth latency in octanoic acid-supplemented medium accompanying the decrease in intracellular pH and cell viability. Applied and Environmental Microbiology, 64, 779–783.PubMedGoogle Scholar
  38. Viegas, A. C., & Sá-Correia, I. (1995). Toxicity of octanoic acid in Saccharomyces cerevisiae at temperatures between 8.5 and 30°C. Enzyme and Microbial Technology, 17, 826–831.CrossRefGoogle Scholar
  39. Vindelov, J., & Arneborg, N. (2002). Saccharomyces cerevisiae and Zygosaccharomyces mellis exhibit different hyperosmotic shock responses. Yeast, 19, 429–439.PubMedCrossRefGoogle Scholar
  40. Westerhuis, J. A., Kourti, T., & MacGregor, J. F. (1999). Comparing alternative approaches for multivariate statistical analysis of batch process data. Journal of Chemometrics, 13, 397–413.CrossRefGoogle Scholar
  41. Wishart, D. S., Knox, C., Guo, A. C., Eisner, R., Young, N., Gautam, B., et al. (2009). HMDB: a knowledgebase for the human metabolome. Nucleic Acids Research, 37, D603–D610.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Artur B. Lourenço
    • 1
  • José R. Ascenso
    • 2
  • Isabel Sá-Correia
    • 1
  1. 1.IBB—Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior TécnicoTechnical University of LisbonLisbonPortugal
  2. 2.Centro de Química Estrutural, Instituto Superior TécnicoTechnical University of LisbonLisbonPortugal

Personalised recommendations