Metabolomics

, Volume 7, Issue 3, pp 375–387 | Cite as

Metabolomics of prolonged fasting in humans reveals new catabolic markers

  • Isabel Rubio-Aliaga
  • Baukje de Roos
  • Susan J. Duthie
  • L. Katie Crosley
  • Claus Mayer
  • Graham Horgan
  • Ian J. Colquhoun
  • Gwénaëlle Le Gall
  • Fritz Huber
  • Werner Kremer
  • Michael Rychlik
  • Suzan Wopereis
  • Ben van Ommen
  • Gabriele Schmidt
  • Carolin Heim
  • Freek G. Bouwman
  • Edwin C. Mariman
  • Francis Mulholland
  • Ian T. Johnson
  • Abigael C. Polley
  • Ruan M. Elliott
  • Hannelore Daniel
Original Article

Abstract

Fasting is one of the simplest metabolic challenges that can be performed in humans. We here report for the first time a comprehensive analysis of the human “fasting metabolome” obtained from analysis of plasma and urine samples in a small cohort of healthy volunteers, using nuclear magnetic resonance (NMR), gas chromatography- and liquid chromatography-mass spectrometry (GC-MS and LC-MS). Intra- and inter-individual variation of metabolites was on measurement of four overnight fasting samples collected from each volunteer over a four week period. One additional sample per volunteer was collected following a prolonged fasting period of 36 h. Amongst a total of 377 quantified entities in plasma around 44% were shown to change significantly in concentration when volunteers extended fasting from 12 to 36 h. In addition to known markers (plasma free fatty acids, glycerol, ketone bodies) that reflect changes in the body’s fuel management under fasting conditions a wide range of “new” entities such as α-aminobutyrate as well as other amino and keto acids were identified as fasting markers. Based on multiple correlations amongst the metabolites and selected hormones in plasma such as leptin or insulin-like-growth-factor-1 (IGF-1), a robust metabolic network with coherent regulation of a wide range of metabolites could be identified. The metabolomics approach described here demonstrates the plasticity of human metabolism and identifies new and robust markers of the fasting state.

Keywords

Fasting response Metabolite profiling Subject variability 

Supplementary material

11306_2010_255_MOESM1_ESM.pdf (860 kb)
Supplementary material 1 (PDF 861 kb)
11306_2010_255_MOESM2_ESM.doc (38 kb)
Supplementary material 2 (DOC 39 kb)
11306_2010_255_MOESM3_ESM.xls (82 kb)
Supplementary material 3 (XLS 83 kb)

References

  1. Baccini, M., Bachmaier, E. M., Biggeri, A., Boekschoten, M. V., Bouwman, F. G., Brennan, L., et al. (2008). The NuGO proof of principle study package: A collaborative research effort of the European Nutrigenomics Organisation. Genes and Nutrition, 3, 147–151.PubMedCrossRefGoogle Scholar
  2. Bergman, B. C., Cornier, M. A., Horton, T. J., & Bessesen, D. H. (2007). Effects of fasting on insulin action and glucose kinetics in lean and obese men and women. American Journal of Physiology. Endocrinology and Metabolism, 293, E1103–E1111.PubMedCrossRefGoogle Scholar
  3. Brosnan, J. T., & Brosnan, M. E. (2006). Branched-chain amino acids: Enzyme and substrate regulation. Journal of Nutrition, 136, 207S–211S.PubMedGoogle Scholar
  4. Cahill, G. F., Jr. (2006). Fuel metabolism in starvation. Annual Review of Nutrition, 26, 1–22.PubMedCrossRefGoogle Scholar
  5. Chandramouli, V., Ekberg, K., Schumann, W. C., Kalhan, S. C., Wahren, J., & Landau, B. R. (1997). Quantifying gluconeogenesis during fasting. American Journal of Physiology, 273, E1209–E1215.PubMedGoogle Scholar
  6. Crosley, L. K., Duthie, S. J., Polley, A. C., Bouwman, F. G., Heim, C., Mulholland, F., et al. (2009). Variation in protein levels obtained from human blood cells and biofluids for platelet, peripheral blood mononuclear cell, plasma, urine and saliva proteomics. Genes and Nutrition, 4, 95–102.PubMedCrossRefGoogle Scholar
  7. Felig, P., Owen, O. E., Wahren, J., & Cahill, G. F., Jr. (1969). Amino acid metabolism during prolonged starvation. Journal of Clinical Investigation, 48, 584–594.PubMedCrossRefGoogle Scholar
  8. Gall, W. E., Beebe, K., Lawton, K. A., Adam, K. P., Mitchell, M. W., Nakhle, P. J., et al. (2010). Alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS One, 5, e10883.PubMedCrossRefGoogle Scholar
  9. Illig, T., Gieger, C., Zhai, G., Romisch-Margl, W., Wang-Sattler, R., Prehn, C., et al. (2010). A genome-wide perspective of genetic variation in human metabolism. Nature Genetics, 42, 137–141.PubMedCrossRefGoogle Scholar
  10. Kaess, B., Fischer, M., Baessler, A., Stark, K., Huber, F., Kremer, W., et al. (2008). The lipoprotein subfraction profile: heritability and identification of quantitative trait loci. Journal of Lipid Research, 49, 715–723.PubMedCrossRefGoogle Scholar
  11. Kaspar, H., Dettmer, K., Chan, Q., Daniels, S., Nimkar, S., Daviglus, M. L., et al. (2009). Urinary amino acid analysis: A comparison of iTRAQ®-LC-MS/MS, GC-MS, and amino acid analyzer. Journal of Chromatography B, 877, 1838–1846.CrossRefGoogle Scholar
  12. Kussmann, M., Rezzi, S., & Daniel, H. (2008). Profiling techniques in nutrition and health research. Current Opinion in Biotechnology, 19, 83–99.PubMedCrossRefGoogle Scholar
  13. Laforet, P., Acquaviva-Bourdain, C., Rigal, O., Brivet, M., Penisson-Besnier, I., Chabrol, B., et al. (2009). Diagnostic assessment and long-term follow-up of 13 patients with Very Long-Chain Acyl-Coenzyme A dehydrogenase (VLCAD) deficiency. Neuromuscular Disorders, 19, 324–329.PubMedCrossRefGoogle Scholar
  14. Landaas, S., & Pettersen, J. E. (1975). Clinical conditions associated with urinary excretion of 2-hydroxybutyric acid. Scandinavian Journal of Clinical and Laboratory Investigation, 35, 259–266.PubMedCrossRefGoogle Scholar
  15. Landau, B. R., Wahren, J., Chandramouli, V., Schumann, W. C., Ekberg, K., & Kalhan, S. C. (1996). Contributions of gluconeogenesis to glucose production in the fasted state. Journal of Clinical Investigation, 98, 378–385.PubMedCrossRefGoogle Scholar
  16. Li, X., Xu, Z., Lu, X., Yang, X., Yin, P., Kong, H., et al. (2009). Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics: Biomarker discovery for diabetes mellitus. Analytica Chimica Acta, 633, 257–262.PubMedCrossRefGoogle Scholar
  17. Linsel-Nitschke, P., Jansen, H., Aherrarhou, Z., Belz, S., Mayer, B., Lieb, W., et al. (2009). Macrophage cholesterol efflux correlates with lipoprotein subclass distribution and risk of obstructive coronary artery disease in patients undergoing coronary angiography. Lipids in Health and Disease, 8, 14.PubMedCrossRefGoogle Scholar
  18. R Development Core Team. (2009). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
  19. Shaham, O., Wei, R., Wang, T. J., Ricciardi, C., Lewis, G. D., Vasan, R. S., et al. (2008). Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Molecular Systems Biology, 4, 214.PubMedCrossRefGoogle Scholar
  20. Shearer, J., Duggan, G., Weljie, A., Hittel, D. S., Wasserman, D. H., & Vogel, H. J. (2008). Metabolomic profiling of dietary-induced insulin resistance in the high fat-fed C57BL/6J mouse. Diabetes, Obesity and Metabolism, 10, 950–958.PubMedCrossRefGoogle Scholar
  21. Soga, T., Baran, R., Suematsu, M., Ueno, Y., Ikeda, S., Sakurakawa, T., et al. (2006). Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. The Journal of Biological Chemistry, 281, 16768–16776.PubMedCrossRefGoogle Scholar
  22. Soutschek, J., Akinc, A., Bramlage, B., Charisse, K., Constien, R., Donoghue, M., et al. (2004). Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature, 432, 173–178.PubMedCrossRefGoogle Scholar
  23. Steele, R. D., Weber, H., & Patterson, J. I. (1984). Characterization of alpha-ketobutyrate metabolism in rat tissues: Effects of dietary protein and fasting. Journal of Nutrition, 114, 701–710.PubMedGoogle Scholar
  24. Van Der Kloet, F. M., Bobeldijk, I., Verheij, E. R., & Jellema, R. H. (2009). Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping. Journal of Proteome Research, 8, 5132–5141.PubMedCrossRefGoogle Scholar
  25. Van Ommen, B. (2007). Personalized nutrition from a health perspective: luxury or necessity? Genes and Nutrition, 2, 3–4.PubMedCrossRefGoogle Scholar
  26. Wahren, J., & Ekberg, K. (2007). Splanchnic regulation of glucose production. Annual Review of Nutrition, 27, 329–345.PubMedCrossRefGoogle Scholar
  27. Weljie, A. M., Dowlatabadi, R., Miller, B. J., Vogel, H. J., & Jirik, F. R. (2007). An inflammatory arthritis-associated metabolite biomarker pattern revealed by 1H NMR spectroscopy. Journal of Proteome Research, 6, 3456–3464.PubMedCrossRefGoogle Scholar
  28. Weljie, A. M., Newton, J., Mercier, P., Carlson, E., & Slupsky, C. M. (2006). Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Analytical Chemistry, 78, 4430–4442.PubMedCrossRefGoogle Scholar
  29. Wopereis, S., Rubingh, C. M., Van Erk, M. J., Verheij, E. R., Van Vliet, T., Cnubben, N. H., et al. (2009). Metabolic profiling of the response to an oral glucose tolerance test detects subtle metabolic changes. PLoS One, 4, e4525.PubMedCrossRefGoogle Scholar
  30. Zhao, X., Peter, A., Fritsche, J., Elcnerova, M., Fritsche, A., Haring, H. U., et al. (2009). Changes of the plasma metabolome during an oral glucose tolerance test: Is there more than glucose to look at? American Journal of Physiology. Endocrinology and Metabolism, 296, E384–E393.PubMedCrossRefGoogle Scholar
  31. Zimmermann, T. S., Lee, A. C., Akinc, A., Bramlage, B., Bumcrot, D., Fedoruk, M. N., et al. (2006). RNAi-mediated gene silencing in non-human primates. Nature, 441, 111–114.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Isabel Rubio-Aliaga
    • 1
  • Baukje de Roos
    • 2
  • Susan J. Duthie
    • 2
  • L. Katie Crosley
    • 2
  • Claus Mayer
    • 3
  • Graham Horgan
    • 3
  • Ian J. Colquhoun
    • 4
  • Gwénaëlle Le Gall
    • 4
  • Fritz Huber
    • 5
  • Werner Kremer
    • 5
  • Michael Rychlik
    • 6
  • Suzan Wopereis
    • 7
  • Ben van Ommen
    • 7
  • Gabriele Schmidt
    • 1
  • Carolin Heim
    • 1
  • Freek G. Bouwman
    • 8
  • Edwin C. Mariman
    • 8
  • Francis Mulholland
    • 4
  • Ian T. Johnson
    • 4
  • Abigael C. Polley
    • 4
  • Ruan M. Elliott
    • 4
  • Hannelore Daniel
    • 1
  1. 1.Molecular Nutrition Unit, ZIEL—Research Center for Nutrition and Food SciencesTechnische Universität MünchenFreising-WeihenstephanGermany
  2. 2.Rowett Institute of Nutrition and HealthUniversity of AberdeenAberdeenUK
  3. 3.Biomathematics and Statistics ScotlandAberdeenScotland, UK
  4. 4.Institute of Food ResearchNorwichUK
  5. 5.LIPOFIT Analytics GmbHRegensburgGermany
  6. 6.Bioanalytik Weihenstephan, ZIEL—Research Center for Nutrition and Food SciencesTechnische Universität MünchenFreising-WeihenstephanGermany
  7. 7.Physiological GenomicsTNO-Quality of LifeZeistThe Netherlands
  8. 8.Functional GeneticsMaastricht UniversityMaastrichtThe Netherlands

Personalised recommendations