Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Trend analysis of metabonomics and systematic review of metabonomics-derived cancer marker metabolites

Abstract

In this paper, trend analyses were performed to compare the different ‘omic’ technologies and the different analytical platforms and biological matrices exploited in metabonomic studies. While common and differential marker metabolites had been identified using various analytical platforms in metabonomics, little research was directed to review and consolidate marker metabolites in each disease state. A systematic review of metabonomics-derived marker metabolites in different cancers was performed to understand the significance of metabonomics in elucidating cancer biochemistry. The biological pathways associated with the cancer marker metabolites were further correlated to the pathology of cancers. Our trend analyses indicated that metabonomic publications increased exponentially in recent years, with nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography/mass spectrometry (LC/MS) being the most popular analytical platforms while blood, urine and tissue are the most commonly profiled biological matrices. Based on the consolidated cancer marker metabolites, it is reinforced that different cancers possess some common and yet distinct metabolic phenotypes, exhibiting numerous perturbed biochemical pathways related to their needs to support cell growth and proliferation and facilitate cancer cell survival.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ahmed, S. S., Santosh, W., Kumar, S., & Christlet, H. T. T. (2009). Metabolic profiling of Parkinson’s disease: Evidence of biomarker from gene expression analysis and rapid neural network detection. Journal of Biomedical Science, 16, 63.

  2. Allard, E., Bäckström, D., Danielsson, R., Sjöberg, P., & Bergquist, J. (2008). Comparing capillary electrophoresis-mass spectrometry fingerprints of urine samples obtained after intake of coffee, tea, or water. Analytical Chemistry, 80, 8946–8955.

  3. Altmaier, E., Kastenmüller, G., Römisch-Margl, W., et al. (2009). Variation in the human lipidome associated with coffee consumption as revealed by quantitative targeted metabolomics. Molecular Nutrition & Food Research, 53, 1357–1365.

  4. Baggetto, L. G. (1992). Deviant energetic metabolism of glycolytic cancer cells. Biochimie, 74, 959–974.

  5. Balendiran, G. K., Dabur, R., & Fraser, D. (2004). The role of glutathione in cancer. Cell Biochemistry and Function, 22, 343–352.

  6. Ballatori, N., Krance, S. M., Notenboom, S., et al. (2009). Glutathione dysregulation and the etiology and progression of human diseases. Biological Chemistry, 390, 191–214.

  7. Bao, Y., Zhao, T., Wang, X., et al. (2009). Metabonomic variations in the drug-treated type 2 diabetes mellitus patients and healthy volunteers. Journal of Proteome Research, 8, 1623–1630.

  8. Barba, I., Fernandez-Montesinos, R., Garcia-Dorado, D., & Pozo, D. (2008). Alzheimer’s disease beyond the genomic era: Nuclear magnetic resonance (NMR) spectroscopy-based metabolomics. Journal of Cellular and Molecular Medicine, 12, 1477–1485.

  9. Barba, I., Sanz, C., Barbera, A., et al. (2009). Metabolic fingerprinting of fresh lymphoma samples used to discriminate between follicular and diffuse large B-cell lymphomas. Experimental Hematology, 37, 1259–1265.

  10. Bathen, T. F., Jensen, L. R., Sitter, B., et al. (2007). MR-determined metabolic phenotype of breast cancer in prediction of lymphatic spread, grade, and hormone status. Breast Cancer Research and Treatment, 104, 181–189.

  11. Bertram, H. C., Eggers, N., & Eller, N. (2009). Potential of human saliva for nuclear magnetic resonance-based metabolomics and for health-related biomarker identification. Analytical Chemistry, 81, 9188–9193.

  12. Bollard, M., Xu, J., Purcell, W., et al. (2002). Metabolic profiling of the effects of d-galactosamine in liver spheroids using (1)H NMR and MAS-NMR spectroscopy. Chemical Research in Toxicology, 15, 1351–1359.

  13. Borek, E., Baliga, B. S., Gehrke, C. W., et al. (1977). High turnover rate of transfer RNA in tumor tissue. Cancer Research, 37, 3362–3366.

  14. Bowser, R., Cudkowicz, M., & Kaddurah-Daouk, R. (2006). Biomarkers for amyotrophic lateral sclerosis. Expert Review of Molecular Diagnostics, 6, 387–398.

  15. Brière, J. J., Favier, J., Gimenez-Roqueplo, A. P., & Rustin, P. (2006). Tricarboxylic acid cycle dysfunction as a cause of human diseases and tumor formation. American Journal of Physiology: Cell Physiology, 291, C1114–C1120.

  16. Brindle, J. T., Antti, H., Holmes, E., et al. (2002). Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nature Medicine, 8, 1439–1444.

  17. Brindle, J. T., Nicholson, J. K., Schofield, P. M., Grainger, D. J., & Holmes, E. (2003). Application of chemometrics to 1H NMR spectroscopic data to investigate a relationship between human serum metabolic profiles and hypertension. Analyst, 128, 32–36.

  18. Busk, M., Horsman, M. R., Kristjansen, P. E. G., et al. (2008). Aerobic glycolysis in cancers: Implications for the usability of oxygen-responsive genes and fluorodeoxyglucose-PET as markers of tissue hypoxia. International Journal of Cancer, 122, 2726–2734.

  19. Cai, S., Huo, T., Xu, J., et al. (2009). Effect of mitiglinide on Streptozotocin-induced experimental type 2 diabetic rats: A urinary metabonomics study based on ultra-performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 877, 3619–3624.

  20. Calabrese, C., Pisi, A., Di Febo, G., et al. (2008). Biochemical alterations from normal mucosa to gastric cancer by ex vivo magnetic resonance spectroscopy. Cancer Epidemiology, Biomarkers and Prevention, 17, 1386–1395.

  21. Calvert, P., Yao, K. S., Hamilton, T. C., & O’Dwyer, P. J. (1998). Clinical studies of reversal of drug resistance based on glutathione. Chemico-Biological Interactions, 111–112, 213–224.

  22. Cañizares, F., Salinas, J., de las Heras, M., et al. (1999). Prognostic value of ornithine decarboxylase and polyamines in human breast cancer: Correlation with clinicopathologic parameters. Clinical Cancer Research, 5, 2035–2041.

  23. Catherino, W. H., Mayers, C. M., Mantzouris, T., et al. (2007). Compensatory alterations in energy homeostasis characterized in uterine tumors from hereditary leiomyomatosis and renal cell cancer. Fertility and Sterility, 88, 1039–1048.

  24. Chan, E., Koh, P., Mal, M., et al. (2009). Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). Journal of Proteome Research, 8, 352–361.

  25. Chen, D. X., Schwartz, P. E., & Li, F. Q. (1990). Saliva and serum CA 125 assays for detecting malignant ovarian tumors. Obstetrics and Gynecology, 75, 701–704.

  26. Chen, J., Wang, W., Lv, S., et al. (2009a). Metabonomics study of liver cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations. Analytica Chimica Acta, 650, 3–9.

  27. Chen, Y., Zhang, R., Song, Y., et al. (2009b). RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: Finding potential biomarkers for breast cancer. Analyst, 134, 2003–2011.

  28. Cho, S. H., Choi, M. H., Lee, W. Y., & Chung, B. C. (2009a). Evaluation of urinary nucleosides in breast cancer patients before and after tumor removal. Clinical Biochemistry, 42, 540–543.

  29. Cho, Y. D., Choi, G. H., Lee, S. P., & Kim, J. K. (2003). (1)H-MRS metabolic patterns for distinguishing between meningiomas and other brain tumors. Magnetic Resonance Imaging, 21, 663–672.

  30. Cho, W. C., William, C., & Cho, S. (Eds.). (2009b). An omics perspective of cancer. New York: Springer.

  31. Choi, J. K., Dedeoglu, A., & Jenkins, B. G. (2007). Application of MRS to mouse models of neurodegenerative illness. NMR in Biomedicine, 20, 216–237.

  32. Dalvie, D., Obach, R., Kang, P., et al. (2009). Assessment of three human in vitro systems in the generation of major human excretory and circulating metabolites. Chemical Research in Toxicology, 22, 357–368.

  33. DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G., & Thompson, C. B. (2008). The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metabolism, 7, 11–20.

  34. DeBerardinis, R. J., Mancuso, A., Daikhin, E., et al. (2007). Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences of the United States of America, 104, 19345–19350.

  35. Demir, M., Iplikcioglu, A., Dincer, A., Arslan, M., & Sav, A. (2006). Single voxel proton MR spectroscopy findings of typical and atypical intracranial meningiomas. European Journal of Radiology, 60(2006), 48–55.

  36. Denkert, C., Budczies, J., Kind, T., et al. (2006). Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Research, 66, 10795–10804.

  37. Denkert, C., Budczies, J., Weichert, W., et al. (2008). Metabolite profiling of human colon carcinoma—Deregulation of TCA cycle and amino acid turnover. Molecular Cancer, 7, 72–88.

  38. Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26, 51–78.

  39. Di, L., Claudino, W., Colangiuli, D., et al. (2007). New strategies to identify molecular markers predicting chemotherapy activity and toxicity in breast cancer. Ann Oncol, 18, xii8–xii14.

  40. Dowling, C., Bollen, A. W., Noworolski, S. M., et al. (2001). Preoperative proton MR spectroscopic imaging of brain tumors: Correlation with histopathologic analysis of resection specimens. AJNR. American Journal of Neuroradiology, 22, 604–612.

  41. Dunn, W. B., Bailey, N. J. C., & Johnson, H. E. (2005). Measuring the metabolome: Current analytical technologies. Analyst, 130, 606–625.

  42. Dunn, W. B., & Ellis, D. I. (2005). Metabolomics: Current analytical platforms and methodologies. Trends in Analytical Chemistry, 24, 285–294.

  43. Dunne, V. G., Bhattachayya, S., Besser, M., Rae, C., & Griffin, J. L. (2005). Metabolites from cerebrospinal fluid in aneurysmal subarachnoid haemorrhage correlate with vasospasm and clinical outcome: A pattern-recognition 1H NMR study. NMR in Biomedicine, 18, 24–33.

  44. Dykens, J., Jamieson, J., Marroquin, L., et al. (2008). Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro. Toxicology and Applied Pharmacology, 233, 203–210.

  45. Feng, B., Zheng, M., Zheng, Y., et al. (2005). Normal and modified urinary nucleosides represent novel biomarkers for colorectal cancer diagnosis and surgery monitoring. Journal of Gastroenterology and Hepatology, 20, 1913–1919.

  46. Fiehn, O. (2002). Metabolomics—The link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171.

  47. Frezza, C., & Gottlieb, E. (2009). Mitochondria in cancer: Not just innocent bystanders. Seminars in Cancer Biology, 19, 4–11.

  48. Gao, H., Dong, B., Liu, X., et al. (2008). Metabonomic profiling of renal cell carcinoma: High-resolution proton nuclear magnetic resonance spectroscopy of human serum with multivariate data analysis. Analytica Chimica Acta, 624, 269–277.

  49. Gao, H., Lu, Q., Liu, X., et al. (2009). Application of H-1 NMR-based metabonomics in the study of metabolic profiling of human hepatocellular carcinoma and liver cirrhosis. Cancer Science, 100, 782–785.

  50. Gogvadze, V., Zhivotovsky, B., & Orrenius, S. (2009). The Warburg effect and mitochondrial stability in cancer cells. Molecular Aspects of Medicine, 31, 60–74.

  51. Gökmen, S. S., Aygit, A. C., Ayhan, M. S., Yorulmaz, F., & Gülen, S. (2001). Significance of arginase and ornithine in malignant tumors of the human skin. Journal of Laboratory and Clinical Medicine, 137, 340–344.

  52. Gowda, G., Zhang, S., Gu, H., et al. (2008). Metabolomics-based methods for early disease diagnostics. Expert Review of Molecular Diagnostics, 8, 617–633.

  53. Graça, G., Duarte, I. F., Barros, A. S., et al. (2009). (1)H NMR based metabonomics of human amniotic fluid for the metabolic characterization of fetus malformations. Journal of Proteome Research, 8, 4144–4150.

  54. Graça, G., Duarte, I. F., Goodfellow, B. J., et al. (2008). Metabolite profiling of human amniotic fluid by hyphenated nuclear magnetic resonance spectroscopy. Analytical Chemistry, 80, 6085–6092.

  55. Griffin, J. L., & Shockcor, J. P. (2004). Metabolic profiles of cancer cells. Nature Reviews Cancer, 4, 551–561.

  56. Griffith, H. R., den Hollander, J. A., Okonkwo, O. C., et al. (2008). Brain metabolism differs in Alzheimer’s disease and Parkinson’s disease dementia. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 4, 421–427.

  57. Hatzivassiliou, G., Zhao, F., Bauer, D. E., et al. (2005). ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell, 8, 311–321.

  58. Hazany, S., Hesselink, J. R., Healy, J. F., & Imbesi, S. G. (2007). Utilization of glutamate/creatine ratios for proton spectroscopic diagnosis of meningiomas. Neuroradiology, 49, 121–127.

  59. Hirayama, A., Kami, K., Sugimoto, M., et al. (2009). Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Research, 69, 4918–4925.

  60. Hoffmann, G. F., Meier-Augenstein, W., Stöckler, S., et al. (1993). Physiology and pathophysiology of organic acids in cerebrospinal fluid. Journal of Inherited Metabolic Disease, 16, 648–669.

  61. Holmes, E., Tsang, T. M., Huang, J. T. J., et al. (2006). Metabolic profiling of CSF: Evidence that early intervention may impact on disease progression and outcome in schizophrenia. PLoS Medicine, 3, e327.

  62. Hood, L., Heath, J. R., Phelps, M. E., & Lin, B. (2004). Systems biology and new technologies enable predictive and preventative medicine. Science, 306, 640–643.

  63. Howe, F. A., Barton, S. J., Cudlip, S. A., et al. (2003). Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magnetic Resonance in Medicine, 49, 223–232.

  64. Ishihara, K., Katsutani, N., Asai, N., et al. (2009). Identification of urinary biomarkers useful for distinguishing a difference in mechanism of toxicity in rat model of cholestasis. Basic and Clinical Pharmacology and Toxicology, 105, 156–166.

  65. Issaq, H., Nativ, O., Waybright, T., et al. (2008). Detection of bladder cancer in human urine by metabolomic profiling using high performance liquid chromatography/mass spectrometry. Journal of Urology, 179, 2422–2426.

  66. Kaddurah-Daouk, R., Kristal, B. S., & Weinshilboum, R. M. (2008). Metabolomics: A global biochemical approach to drug response and disease. Annual Review of Pharmacology and Toxicology, 48, 653–683.

  67. Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27–30.

  68. Kaufman, E., & Lamster, I. B. (2002). The diagnostic applications of saliva—A review. Critical Reviews in Oral Biology and Medicine, 13, 197–212.

  69. Kim, K., Aronov, P., Zakharkin, S. O., et al. (2009). Urine metabolomics analysis for kidney cancer detection and biomarker discovery. Molecular and Cellular Proteomics, 8, 558–570.

  70. Kim, Y., Maruvada, P., & Milner, J. (2008). Metabolomics in biomarker discovery: Future uses for cancer prevention. Future Oncology, 4, 93–102.

  71. Kim, J. W., Tchernyshyov, I., Semenza, G. L., & Dang, C. V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 3, 177–185.

  72. Kind, T., Tolstikov, V., Fiehn, O., & Weiss, R. H. (2007). A comprehensive urinary metabolomic approach for identifying kidney cancer. Analytical Biochemistry, 363, 185–195.

  73. Kinoshita, Y., & Yokota, A. (1997). Absolute concentrations of metabolites in human brain tumors using in vitro proton magnetic resonance spectroscopy. NMR in Biomedicine, 10, 2–12.

  74. Klunk, W. E., Xu, C., Panchalingam, K., McClure, R. J., & Pettegrew, J. W. (1996). Quantitative 1H and 31P MRS of PCA extracts of postmortem Alzheimer’s disease brain. Neurobiology of Aging, 17, 349–357.

  75. Knox, S. S. (2010). From ‘omics’ to complex disease: A systems biology approach to gene–environment interactions in cancer. Cancer Cell International, 10, 11.

  76. Kuhara, T., Ohse, M., Inoue, Y., et al. (2009). Urinary metabolic profile of phenylketonuria in patients receiving total parenteral nutrition and medication. Rapid Communications in Mass Spectrometry, 23, 3167–3172.

  77. Lai, H. S., Lee, J. C., Lee, P. H., Wang, S. T., & Chen, W. J. (2005). Plasma free amino acid profile in cancer patients. Seminars in Cancer Biology, 15, 267–276.

  78. Law, W. S., Huang, P. Y., Ong, E. S., et al. (2008). Metabonomics investigation of human urine after ingestion of green tea with gas chromatography/mass spectrometry, liquid chromatography/mass spectrometry and (1)H NMR spectroscopy. Rapid Communications in Mass Spectrometry, 22, 2436–2446.

  79. Lehnhardt, F. G., Bock, C., Röhn, G., Ernestus, R. I., & Hoehn, M. (2005). Metabolic differences between primary and recurrent human brain tumors: A 1H NMR spectroscopic investigation. NMR in Biomedicine, 18, 371–382.

  80. Lehnhardt, F. G., Röhn, G., Ernestus, R. I., Grüne, M., & Hoehn, M. (2001). 1H- and (31)P-MR spectroscopy of primary and recurrent human brain tumors in vitro: Malignancy-characteristic profiles of water soluble and lipophilic spectral components. NMR in Biomedicine, 14, 307–317.

  81. Lenz, E. M., & Wilson, I. D. (2007). Analytical strategies in metabonomics. Journal of Proteome Research, 6, 443–458.

  82. Lindskog, M., Spenger, C., Klason, T., et al. (2005). Proton magnetic resonance spectroscopy in neuroblastoma: Current status, prospects and limitations. Cancer Letters, 228, 247–255.

  83. Liu, Y., Borchert, G. L., Surazynski, A., & Phang, J. M. (2008). Proline oxidase, a p53-induced gene, targets COX-2/PGE2 signaling to induce apoptosis and inhibit tumor growth in colorectal cancers. Oncogene, 27, 6729–6737.

  84. Liu, A., Chen, Y., Yang, Z., et al. (2009a). New metabolites of fenofibrate in Sprague–Dawley rats by UPLC-ESI-QTOF-MS-based metabolomics coupled with LC-MS/MS. Xenobiotica, 39, 345–354.

  85. Liu, A., Patterson, A. D., Yang, Z., et al. (2009b). Fenofibrate metabolism in the cynomolgus monkey using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry-based metabolomics. Drug Metabolism and Disposition, 37, 1157–1163.

  86. Locigno, R., & Castronovo, V. (2001). Reduced glutathione system: Role in cancer development, prevention and treatment (review). International Journal of Oncology, 19, 221–236.

  87. Loo, R., Coen, M., Ebbels, T., et al. (2009). Metabolic profiling and population screening of analgesic usage in nuclear magnetic resonance spectroscopy-based large-scale epidemiologic studies. Analytical Chemistry, 81, 5119–5129.

  88. López-Lázaro, M. (2008). The Warburg effect: Why and how do cancer cells activate glycolysis in the presence of oxygen? Anti-Cancer Agents in Medicinal Chemistry, 8, 305–312.

  89. Lutz, N. W., Viola, A., Malikova, I., et al. (2007). A branched-chain organic acid linked to multiple sclerosis: First identification by NMR spectroscopy of CSF. Biochemical and Biophysical Research Communications, 354, 160–164.

  90. Majós, C., Alonso, J., Aguilera, C., et al. (2003). Proton magnetic resonance spectroscopy ((1)H MRS) of human brain tumours: Assessment of differences between tumour types and its applicability in brain tumour categorization. European Radiology, 13, 582–591.

  91. Manton, D. J., Lowry, M., Blackband, S. J., & Horsman, A. (1995). Determination of proton metabolite concentrations and relaxation parameters in normal human brain and intracranial tumours. NMR in Biomedicine, 8, 104–112.

  92. Mattsson, N., Blennow, K., & Zetterberg, H. (2009). CSF biomarkers: Pinpointing Alzheimer pathogenesis. Annals of the New York Academy of Sciences, 1180, 28–35.

  93. Mazurek, S., & Eigenbrodt, E. (2003). The tumor metabolome. Anticancer Research, 23, 1149–1154.

  94. Medina, M. A. (2001). Glutamine and cancer. Journal of Nutrition, 131, 2539S–2542S (discussion 2550S).

  95. Meister, A., & Tate, S. S. (1976). Glutathione and related gamma-glutamyl compounds: Biosynthesis and utilization. Annual Review of Biochemistry, 45, 559–604.

  96. Metz, T. O., Zhang, Q., Page, J. S., et al. (2007). The future of liquid chromatography-mass spectrometry (LC-MS) in metabolic profiling and metabolomic studies for biomarker discovery. Biomarkers in Medicine, 1, 159–185.

  97. Miao, X., Zhong, C., Wang, Y., et al. (2009). In vitro metabolism of beta-lapachone (ARQ 501) in mammalian hepatocytes and cultured human cells. Rapid Communications in Mass Spectrometry, 23, 12–22.

  98. Michell, A., Mosedale, D., Grainger, D., & Barker, R. (2008). Metabolomic analysis of urine and serum in Parkinson’s disease. Metabolomics, 4, 191–201.

  99. Monleón, D., Morales, J., Barrasa, A., et al. (2009). Metabolite profiling of fecal water extracts from human colorectal cancer. NMR in Biomedicine, 22, 342–348.

  100. Monleón, D., Morales, J. M., Gonzalez-Darder, J., et al. (2008). Benign and atypical meningioma metabolic signatures by high-resolution magic-angle spinning molecular profiling. Journal of Proteome Research, 7, 2882–2888.

  101. Moreno, A., & Arús, C. (1996). Quantitative and qualitative characterization of 1H NMR spectra of colon tumors, normal mucosa and their perchloric acid extracts: Decreased levels of myo-inositol in tumours can be detected in intact biopsies. NMR in Biomedicine, 9, 33–45.

  102. Mortishire-Smith, R., Skiles, G., Lawrence, J., et al. (2004). Use of metabonomics to identify impaired fatty acid metabolism as the mechanism of a drug-induced toxicity. Chemical Research in Toxicology, 17, 165–173.

  103. Mukherji, S. K., Schiro, S., Castillo, M., et al. (1997). Proton MR spectroscopy of squamous cell carcinoma of the extracranial head and neck: In vitro and in vivo studies. AJNR. American Journal of Neuroradiology, 18, 1057–1072.

  104. Mycielska, M. E., Patel, A., Rizaner, N., et al. (2009). Citrate transport and metabolism in mammalian cells: Prostate epithelial cells and prostate cancer. Bioessays, 31, 10–20.

  105. Nakano, K., Nakao, T., & Schram, K. (1993). Urinary excretion of modified nucleosides as biological marker of RNA turnover in patients with cancer and AIDS. Clinica Chimica Acta, 218, 169–183.

  106. Natsumeda, Y., Prajda, N., Donohue, J. P., Glover, J. L., & Weber, G. (1984). Enzymic capacities of purine de Novo and salvage pathways for nucleotide synthesis in normal and neoplastic tissues. Cancer Research, 44, 2475–2479.

  107. Newman, E., Heslin, M. J., Wolf, R. F., Pisters, P. W., & Brennan, M. F. (1992). The effect of insulin on glucose and protein metabolism in the forearm of cancer patients. Surgical Oncology, 1, 257–267.

  108. Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29, 1181–1189.

  109. Odunsi, K., Wollman, R. M., Ambrosone, C. B., et al. (2005). Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics. International Journal of Cancer, 113, 782–788.

  110. Ohta, T., Masutomi, N., Tsutsui, N., et al. (2009). Untargeted metabolomic profiling as an evaluative tool of fenofibrate-induced toxicology in Fischer 344 male rats. Toxicologic Pathology, 37, 521–535.

  111. Ong, E., Chor, C., Zou, L., & Ong, C. (2009). A multi-analytical approach for metabolomic profiling of zebrafish (Danio rerio) livers. Molecular BioSystems, 5, 288–298.

  112. Opstad, K. S., Provencher, S. W., Bell, B. A., Griffiths, J. R., & Howe, F. A. (2003). Detection of elevated glutathione in meningiomas by quantitative in vivo 1H MRS. Magnetic Resonance in Medicine, 49, 632–637.

  113. Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L., & Denko, N. C. (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metabolism, 3, 187–197.

  114. Pasikanti, K. K., Esuvanranathan, K., Ho, P. C., et al. (2010). Noninvasive Urinary Metabonomic Diagnosis of Human Bladder Cancer. Journal of Proteomic Research, 9, 1627–1634.

  115. Pasikanti, K. K., Ho, P. C., & Chan, E. C. Y. (2008). Gas chromatography/mass spectrometry in metabolic profiling of biological fluids. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 871, 202–211.

  116. Pegg, A. E., & McCann, P. P. (1982). Polyamine metabolism and function. American Journal of Physiology, 243, C212–C221.

  117. Pesek, J. J., Matyska, M. T., Loo, J. A., Fischer, S. M., & Sana, T. R. (2009). Analysis of hydrophilic metabolites in physiological fluids by HPLC-MS using a silica hydride-based stationary phase. Journal of Separation Science, 32, 2200–2208.

  118. Pfeiffer, T., Schuster, S., & Bonhoeffer, S. (2001). Cooperation and competition in the evolution of ATP-producing pathways. Science, 292, 504–507.

  119. Pisters, P. W., & Brennan, M. F. (1990). Amino acid metabolism in human cancer cachexia. Annual Review of Nutrition, 10, 107–132.

  120. Pisters, P. W., Cersosimo, E., Rogatko, A., & Brennan, M. F. (1992). Insulin action on glucose and branched-chain amino acid metabolism in cancer cachexia: Differential effects of insulin. Surgery, 111, 301–310.

  121. Plas, D. R., & Thompson, C. B. (2002). Cell metabolism in the regulation of programmed cell death. Trends in Endocrinology and Metabolism, 13, 75–78.

  122. Porembska, Z., Luboiński, G., Chrzanowska, A., et al. (2003). Arginase in patients with breast cancer. Clinica Chimica Acta, 328, 105–111.

  123. Poulsen, H. E., Prieme, H., & Loft, S. (1998). Role of oxidative DNA damage in cancer initiation and promotion. European Journal of Cancer Prevention, 7, 9–16.

  124. Powers, R. (2009). Advances in nuclear magnetic resonance for drug discovery. Expert Opinion on Drug Discovery, 4, 1077–1098.

  125. Qiu, Y., Cai, G., Su, M., et al. (2009). Serum metabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS. Journal of Proteome Research, 8, 4844–4850.

  126. Roda, J. M., Pascual, J. M., Carceller, F., et al. (2000). Nonhistological diagnosis of human cerebral tumors by 1H magnetic resonance spectroscopy and amino acid analysis. Clinical Cancer Research, 6, 3983–3993.

  127. Rodriguez, P. C., Quiceno, D. G., Zabaleta, J., et al. (2004). Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Research, 64, 5839–5849.

  128. Roudier, E., & Perrin, A. (2009). Considering the role of pyruvate in tumor cells during hypoxia. Biochimica et Biophysica Acta, 1796, 55–62.

  129. Rozenski, J., Crain, P., McCloskey, J., & The, R. (1999). Modification database: Update. Nucleic Acids Research, 27, 196–197.

  130. Sabatine, M. S., Liu, E., Morrow, D. A., et al. (2005). Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation, 112, 3868–3875.

  131. Sander, G., Topp, H., Wieland, J., Heller-Schöch, G., & Schöch, G. (1986). Possible use of urinary modified RNA metabolites in the measurement of RNA turnover in the human body. Human Nutrition. Clinical Nutrition, 40, 103–118.

  132. Sébédio, J. L., Pujos-Guillot, E., & Ferrara, M. (2009). Metabolomics in evaluation of glucose disorders. Current Opinion in Clinical Nutrition and Metabolic Care, 12, 412–418.

  133. Segal, J., Nassi, M., Ford, A. J., & Schuenemeyer, T. D. (1990). Instantaneous and continuous cardiac output in humans obtained with a Doppler pulmonary artery catheter. Journal of the American College of Cardiology, 16, 1398–1407.

  134. Seidel, A., Brunner, S., Seidel, P., Fritz, G. I., & Herbarth, O. (2006). Modified nucleosides: An accurate tumour marker for clinical diagnosis of cancer, early detection and therapy control. British Journal of Cancer, 94, 1726–1733.

  135. Selamnia, M., Robert, V., Mayeur, C., Delpal, S., & Blachier, F. (1998). De novo synthesis of arginine and ornithine from citrulline in human colon carcinoma cells: Metabolic fate of L-ornithine. Biochimica et Biophysica Acta, 1425, 93–102.

  136. Serkova, N. J., Gamito, E. J., Jones, R. H., et al. (2008). The metabolites citrate, myo-inositol, and spermine are potential age-independent markers of prostate cancer in human expressed prostatic secretions. Prostate, 68, 620–628.

  137. Serkova, N., & Glunde, K. (2009). Metabolomics of cancer. Methods in Molecular Biology, 520, 273–295.

  138. Serkova, N. J., Spratlin, J. L., & Eckhardt, S. G. (2007). NMR-based metabolomics: Translational application and treatment of cancer. Current Opinion in Molecular Therapeutics, 9, 572–585.

  139. Sieber, M., Wagner, S., Rached, E., et al. (2009). Metabonomic study of ochratoxin a toxicity in rats after repeated administration: Phenotypic anchoring enhances the ability for biomarker discovery. Chemical Research in Toxicology, 22, 1221–1231.

  140. Sitter, B., Bathen, T., Hagen, B., et al. (2004). Cervical cancer tissue characterized by high-resolution magic angle spinning MR spectroscopy. Magma, 16, 174–181.

  141. Sitter, B., Lundgren, S., Bathen, T. F., et al. (2006). Comparison of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical parameters. NMR in Biomedicine, 19, 30–40.

  142. Spratlin, J. L., Serkova, N. J., & Eckhardt, S. G. (2009). Clinical applications of metabolomics in oncology: A review. Clinical Cancer Research, 15, 431–440.

  143. Sreekumar, A., Poisson, L., Rajendiran, T., et al. (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 457, 910–914.

  144. Star-Lack, J. M., Adalsteinsson, E., Adam, M. F., et al. (2000). In vivo 1H MR spectroscopy of human head and neck lymph node metastasis and comparison with oxygen tension measurements. AJNR. American Journal of Neuroradiology, 21, 183–193.

  145. Streckfus, C., Bigler, L., Tucci, M., & Thigpen, J. T. (2000). A preliminary study of CA15-3, c-erbB-2, epidermal growth factor receptor, cathepsin-D, and p53 in saliva among women with breast carcinoma. Cancer Investigation, 18, 101–109.

  146. Süer Gökmen, S., Yörük, Y., Cakir, E., Yorulmaz, F., & Gülen, S. (1999). Arginase and ornithine, as markers in human non-small cell lung carcinoma. Cancer Biochemistry Biophysics, 17, 125–131.

  147. Sun, J., Von, T., Hines, W., & Beger, R. (2009). Identification of metabolite profiles of the catechol-O-methyl transferase inhibitor tolcapone in rat urine using LC/MS-based metabonomics analysis. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 877, 2557–2565.

  148. Swanson, M. G., Zektzer, A. S., Tabatabai, Z. L., et al. (2006). Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magnetic Resonance in Medicine, 55, 1257–1264.

  149. Tabib, A., & Bachrach, U. (1999). Role of polyamines in mediating malignant transformation and oncogene expression. International Journal of Biochemistry and Cell Biology, 31, 1289–1295.

  150. Takeda, I., Stretch, C., Barnaby, P., et al. (2009). Understanding the human salivary metabolome. NMR in Biomedicine, 22, 577–584.

  151. Tate, A. R., Foxall, P. J., Holmes, E., et al. (2000). Distinction between normal and renal cell carcinoma kidney cortical biopsy samples using pattern recognition of (1)H magic angle spinning (MAS) NMR spectra. NMR in Biomedicine, 13, 64–71.

  152. Tiziani, S., Lopes, V., & Günther, U. L. (2009). Early stage diagnosis of oral cancer using 1H NMR-based metabolomics. Neoplasia, 11, 269–276 (4 p following 269).

  153. Tsang, T. M., Haselden, J. N., & Holmes, E. (2009). Metabonomic characterization of the 3-nitropropionic acid rat model of Huntington’s disease. Neurochemical Research, 34, 1261–1271.

  154. Underwood, B. R., Broadhurst, D., Dunn, W. B., et al. (2006). Huntington disease patients and transgenic mice have similar pro-catabolic serum metabolite profiles. Brain, 129, 877–886.

  155. Vallejo, M., García, A., Tuñón, J., et al. (2009). Plasma fingerprinting with GC-MS in acute coronary syndrome. Analytical and Bioanalytical Chemistry, 394, 1517–1524.

  156. van Velzen, J. J., Westerhuis, J. A., van Duynhoven, J. P. M., et al. (2009). Phenotyping tea consumers by nutrikinetic analysis of polyphenolic end-metabolites. Journal of Proteome Research, 8, 3317–3330.

  157. van Vliet, E., Morath, S., Eskes, C., et al. (2008). A novel in vitro metabolomics approach for neurotoxicity testing, proof of principle for methyl mercury chloride and caffeine. Neurotoxicology, 29, 1–12.

  158. Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 324, 1029–1033.

  159. Vannoni, D., Di Pietro, M. C., Rosi, F., et al. (2004). Metabolism of adenosine in human colorectal tumour. Nucleosides, Nucleotides & Nucleic Acids, 23, 1455–1457.

  160. Vissers, Y. L. J., Dejong, C. H. C., Luiking, Y. C., et al. (2005). Plasma arginine concentrations are reduced in cancer patients: Evidence for arginine deficiency? American Journal of Clinical Nutrition, 81, 1142–1146.

  161. Vulimiri, S., Misra, M., Hamm, J., Mitchell, M., & Berger, A. (2009). Effects of mainstream cigarette smoke on the global metabolome of human lung epithelial cells. Chemical Research in Toxicology, 22, 492–503.

  162. Walsh, M. C., Brennan, L., Malthouse, J. P. G., Roche, H. M., & Gibney, M. J. (2006). Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. American Journal of Clinical Nutrition, 84, 531–539.

  163. Weber, G. (1983a). Biochemical strategy of cancer cells and the design of chemotherapy: G. H. A. Clowes Memorial Lecture. Cancer Research, 43, 3466–3492.

  164. Weber, G. (1983b). Enzymes of purine metabolism in cancer. Clinical Biochemistry, 16, 57–63.

  165. Weinberg, F., & Chandel, N. S. (2009). Mitochondrial metabolism and cancer. Annals of the New York Academy of Sciences, 1177, 66–73.

  166. Williams, R., Lenz, E. M., Wilson, A. J., et al. (2006). A multi-analytical platform approach to the metabonomic analysis of plasma from normal and Zucker (fa/fa) obese rats. Molecular BioSystems, 2, 174–183.

  167. Wishart, D. S., Knox, C., Guo, A. C., et al. (2009). HMDB: A knowledgebase for the human metabolome. Nucleic Acids Research, 37, D603–D610.

  168. Wishart, D. S., Lewis, M. J., Morrissey, J. A., et al. (2008). The human cerebrospinal fluid metabolome. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 871, 164–173.

  169. Wu, G., Bazer, F. W., Davis, T. A., et al. (2009a). Arginine metabolism and nutrition in growth, health and disease. Amino Acids, 37, 153–168.

  170. Wu, H., Xue, R., Dong, L., et al. (2009b). Metabolomic profiling of human urine in hepatocellular carcinoma patients using gas chromatography/mass spectrometry. Analytica Chimica Acta, 648, 98–104.

  171. Wu, H., Xue, R., Lu, C., et al. (2009c). Metabolomic study for diagnostic model of oesophageal cancer using gas chromatography/mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 877, 3111–3117.

  172. Xia, J. F., Liang, Q. L., Hu, P., Wang, Y. M., & Luo, G. A. (2009). Recent trends in strategies and methodologies for metabonomics. Chinese Journal of Analytical Chemistry, 37, 136–143.

  173. Yan, S. K., Wei, B. J., Lin, Z. Y., et al. (2008). A metabonomic approach to the diagnosis of oral squamous cell carcinoma, oral lichen planus and oral leukoplakia. Oral Oncology, 44, 477–483.

  174. Yang, P., Ebbert, J. O., Sun, Z., & Weinshilboum, R. M. (2006). Role of the glutathione metabolic pathway in lung cancer treatment and prognosis: A review. Journal of Clinical Oncology, 24, 1761–1769.

  175. Yang, Y., Li, C., Nie, X., et al. (2007). Metabonomic studies of human hepatocellular carcinoma using high-resolution magic-angle spinning 1H NMR spectroscopy in conjunction with multivariate data analysis. Journal of Proteome Research, 6, 2605–2614.

  176. Yang, J., Xu, G., Hong, Q., et al. (2004a). Discrimination of Type 2 diabetic patients from healthy controls by using metabonomics method based on their serum fatty acid profiles. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 813, 53–58.

  177. Yang, J., Xu, G., Zheng, Y., et al. (2004b). Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 813, 59–65.

  178. Yang, J., Xu, G., Zheng, Y., et al. (2005). Strategy for metabonomics research based on high-performance liquid chromatography and liquid chromatography coupled with tandem mass spectrometry. Journal of Chromatography A, 1084, 214–221.

  179. Yeluri, S., Madhok, B., Prasad, K. R., Quirke, P., & Jayne, D. G. (2009). Cancer’s craving for sugar: An opportunity for clinical exploitation. Journal of Cancer Research and Clinical Oncology, 135, 867–877.

  180. Yi, L. Z., He, J., Liang, Y. Z., Yuan, D. L., & Chau, F. T. (2006). Plasma fatty acid metabolic profiling and biomarkers of type 2 diabetes mellitus based on GC/MS and PLS-LDA. FEBS Letters, 580, 6837–6845.

  181. Young, S., Nessim, M., Falciani, F., et al. (2009). Metabolomic analysis of human vitreous humor differentiates ocular inflammatory disease. Molecular Vision, 15, 1210–1217.

  182. Yuan, K., Kong, H., Guan, Y., Yang, J., & Xu, G. (2007). A GC-based metabonomics investigation of type 2 diabetes by organic acids metabolic profile. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 850, 236–240.

  183. Zeng, M., Che, Z., Liang, Y., et al. (2009). GC-MS based plasma metabolic profiling of type 2 diabetes mellitus. Disease Markers, 69, 941–948.

  184. Zhang, H., Chen, X., Hu, P., et al. (2009a). Metabolomic profiling of rat serum associated with isoproterenol-induced myocardial infarction using ultra-performance liquid chromatography/time-of-flight mass spectrometry and multivariate analysis. Talanta, 79, 254–259.

  185. Zhang, D., Tai, L. K., Wong, L. L., et al. (2005). Proteomic study reveals that proteins involved in metabolic and detoxification pathways are highly expressed in HER-2/neu-positive breast cancer. Molecular and Cellular Proteomics, 4, 1686–1696.

  186. Zhang, Q., Wang, G., Jiye, A., et al. (2009b). Metabonomic profiling of diet-induced hyperlipidaemia in a rat model. Biomarkers, 15, 205–216.

  187. Zhang, J., Yan, L., Chen, W., et al. (2009c). Metabonomics research of diabetic nephropathy and type 2 diabetes mellitus based on UPLC-oaTOF-MS system. Analytica Chimica Acta, 650, 16–22.

Download references

Acknowledgments

This work was supported by the National University of Singapore (NUS) research grant (R-148-000-100-112 to E.C.Y. Chan), the NUS President Graduate Fellowship to K.K. Pasikanti and the NUS Department of Pharmacy Final Year Project grant (R-148-000-003-001 to D.J.Y. Ng).

Conflict of interest

The authors indicated no potential conflicts of interest.

Author information

Correspondence to Eric Chun Yong Chan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3789 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ng, D.J.Y., Pasikanti, K.K. & Chan, E.C.Y. Trend analysis of metabonomics and systematic review of metabonomics-derived cancer marker metabolites. Metabolomics 7, 155–178 (2011). https://doi.org/10.1007/s11306-010-0250-7

Download citation

Keywords

  • Metabonomics
  • Metabolomics
  • Clinical oncology
  • Cancer
  • Metabolic profiling