Metabolomics

, Volume 7, Issue 1, pp 35–53 | Cite as

Metabolomics in pesticide research and development: review and future perspectives

  • Konstantinos A. Aliferis
  • Maria Chrysayi-Tokousbalides
REVIEW ARTICLE

Abstract

The emerge of metabolomics within functional genomics has provided a new dimension in the study of biological systems. In regards to the study of agroecosystems, metabolomics enables monitoring of metabolic changes in association with biotic or abiotic agents such as agrochemicals. Focusing on crop protection chemicals, a great effort has been given towards the development of crop protection agents safer for consumers and the environment and more efficient than the existing ones. Within this framework, metabolomics has so far been a valuable tool for high-throughput screening of bioactive substances in order to discover those with high selectivity, unique modes-of-action, and acceptable eco-toxicological/toxicological profiles. Here, applications of metabolomics in the investigation of the modes-of-action and ecotoxicological–toxicological risk assessment of bioactive compounds, mining of biological systems for the discovery of bioactive metabolites, and the risk assessment of genetic modified crops are discussed.

Keywords

Bioactive compounds Crop protection Natural products Pesticides 

References

  1. Adams, M. D., Celniker, S. E., Holt, R. A., et al. (2000). The genome sequence of Drosophila melanogaster. Science, 287, 2185–2195.PubMedGoogle Scholar
  2. Aharoni, A., de Vos, C. H. R., Verhoeven, H. A., et al. (2002). Non-targeted metabolome analysis by use of Fourier transform ion cyclotron mass spectrometry. OMICS, 6, 217–234.PubMedGoogle Scholar
  3. Akiyama, K., Chikayama, E., Yuasa, H., et al. (2008). PRIMe: A Web site that assembles tools for metabolomics and transcriptomics. In Silico Biology, 8, 339–345.PubMedGoogle Scholar
  4. Aliferis, K. A., & Chrysayi-Tokousbalides, M. (2006). Metabonomic strategy for the investigation of the mode of action of the phytotoxin (5S, 8R, 13S, 16R)-(−)-pyrenophorol using 1H nuclear magnetic resonance fingerprinting. Journal of Agriculture and Food Chemistry, 54, 1687–1692.Google Scholar
  5. Aliferis, K. A., & Jabaji, S. (2009). Metabolic fingerprinting of the plant-pathogen pathosystem, Rhizoctonia solani-Solanum tuberosum using Fourier transform mass spectrometry (FT-ICR/MS). In Proc. XIV congress on Molecular Plant-Microbe Interactions (MPMI) (p. 32).Google Scholar
  6. Aliferis, K. A., & Jabaji, S. (2010). 1H NMR and GC–MS metabolic fingerprinting of developmental stages of Rhizoctonia solani sclerotia. Metabolomics, 6, 96–108.Google Scholar
  7. Aliferis, K. A., Materzok, S., Paziotou, G., & Chrysayi-Tokousbalides, M. (2009). Lemna minor L. as a model organism for ecotoxicological studies performing 1H NMR fingerprinting. Chemosphere, 76, 967–973.PubMedGoogle Scholar
  8. Allen, J., Davey, H. M., Broadhurst, D., Rowland, J. J., Oliver, S. G., & Kell, D. B. (2004). Discrimination of modes of action of antifungal substances by use of metabolic footprinting. Applied and Environmental Microbiology, 70, 6157–6165.PubMedGoogle Scholar
  9. Allen, J. K., Davey, H. M., Broadhurst, D., et al. (2003). High-throughput characterisation of yeast mutants for functional genomics using metabolic footprinting. Nature Biotechnology, 21, 692–696.PubMedGoogle Scholar
  10. Allwood, J. W., Ellis, D. I., & Goodacre, R. (2008). Metabolomic technologies and their application to the study of plants and plant-host interactions. Physiologia Plantarum, 132, 117–135.PubMedGoogle Scholar
  11. Allwood, J. W., Erban, A., de Koning, S., et al. (2009). Inter-laboratory reproducibility of fast gas chromatography-electron impact-time of flight mass spectrometry (GC-EI-TOF/MS) based plant metabolomics. Metabolomics, 5, 479–496.PubMedGoogle Scholar
  12. Allwood, J. W., & Goodacre, R. (2010). HPLC instrumentation applied in plant metabolomic analyses. Phytochemical Analysis, 21, 33–47.PubMedGoogle Scholar
  13. Aranibar, N., Singh, B. J., Stockton, G. W., & Ott, K. H. (2001). Automated mode of action detection by metabolic profiling. Biochemical and Biophysical Research Communications, 286, 150–155.PubMedGoogle Scholar
  14. Atherton, H. J., Bailey, N. J., Zhang, W., et al. (2006). A combined 1H-NMR spectroscopy-and mass spectrometry-based metabolomic study of the PPAR-α null mutant mouse defines profound systemic changes in metabolism linked to the metabolic syndrome. Physiological Genomics, 27, 178–186.PubMedGoogle Scholar
  15. Balba, H. (2007). Review of strobilurin fungicide chemicals. Journal of Environmental Science and Health, 42, 441–451.PubMedGoogle Scholar
  16. Baran, R., Kochi, H., Saito, N., et al. (2006). MathDAMP: A package for differential analysis of metabolite profiles. BMC Bioinformatics, 7, 530.PubMedGoogle Scholar
  17. Bednarek, P., Schneider, B., Svatos, A., Oldham, N. J., & Hahlbrock, K. (2005). Structural complexity, differential response to infection and tissue specificity of indolic and phenylpropanoid secondary metabolism in Arabidopsis roots. Plant Physiology, 138, 1058–1070.PubMedGoogle Scholar
  18. Betz, F. S., Hammond, B. G., & Fuchs, R. L. (2000). Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regulatory Toxicology and Pharmacology, 32, 156–173.PubMedGoogle Scholar
  19. Bezemer, T. M., & van Dam, N. M. (2005). Linking aboveground and belowground interactions via induced plant defences. Trends in Ecology & Evolution, 20, 617–624.Google Scholar
  20. Biais, B., Allwood, J. W., Deborde, C., et al. (2009). 1H NMR, GC-EI-TOFMS, and data set correlation for fruit metabolomics: Application to spatial metabolite analysis in melon. Analytical Chemistry, 81, 2884–2894.PubMedGoogle Scholar
  21. Böcker, S., Letzel, M. C., Lipták, Z., & Pervukhin, A. (2009). SIRIUS: Decomposing isotope patterns for metabolite identification. Bioinformatics, 25, 218–224.PubMedGoogle Scholar
  22. Börner, J., Buchinger, S., & Schomburg, D. (2007). A high-throughput method for microbial metabolome analysis using gas chromatography/mass spectrometry. Analytical Biochemistry, 367, 143–151.PubMedGoogle Scholar
  23. Breitling, R., Ritchie, S., Goodenowe, D., Stewart, M. L., & Barrett, M. P. (2006). Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data. Metabolomics, 2, 155–164.Google Scholar
  24. Broeckling, C. D., Reddy, I. R., Duran, A. L., Zhao, X., & Sumner, L. W. (2006). MET-IDEA: Data extraction tool for mass spectrometry-based metabolomics. Analytical Chemistry, 78, 4334–4341.PubMedGoogle Scholar
  25. Bundy, J. G., Davey, M. P., & Viant, M. R. (2009). Environmental metabolomics: A critical review and future perspectives. Metabolomics, 5, 3–21.Google Scholar
  26. Bundy, J. G., Lenz, E. M., Bailey, N. J., et al. (2002). Metabonomic assessment of toxicity of 4-fluoroaniline,3,5-difluoroaniline and 2-fluoro-4-methylaniline to the earthworm Eisenia veneta (Rosa): Identification of new endogenous biomarkers. Environmental Toxicology and Chemistry, 21, 1966–1972.PubMedGoogle Scholar
  27. Carraro, S., Giordano, G., Reniero, F., Perilongo, G., & Baraldi, E. (2009). Metabolomics: A new frontier for research in pediatrics. Journal of Pediatrics, 154, 638–644.PubMedGoogle Scholar
  28. Caspi, R., Foerster, H., Fulcher, C. A., et al. (2008). The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Research, 36, D623–D631.PubMedGoogle Scholar
  29. Castrillo, J. I., Hayes, A., Mohammed, S., Gaskell, S. J., & Oliver, S. G. (2003). An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry. Phytochemistry, 62, 929–937.PubMedGoogle Scholar
  30. Catchpole, G. S., Beckmann, M., Enot, D. P., et al. (2005). Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proceedings of the National Academy of Sciences of the United States of America, 102, 14458–14462.PubMedGoogle Scholar
  31. Cevallos-Cevallos, J. M., Reyes-De-Corcuera, J. I., Etxeberria, E., Danyluk, M. D., & Rodrick, G. E. (2009). Metabolomic analysis in food science: A review. Trends in Food Science & Technology, 20, 557–566.Google Scholar
  32. Chen, J. H., Linstead, E., Swamidass, S. J., Wang, D., & Baldi, P. (2007). ChemDB update-full-text search and virtual chemical space. Bioinformatics, 23, 2348–2351.PubMedGoogle Scholar
  33. Choi, H.-K., Choi, Y. H., Verberne, M., Lefeber, A. W. M., Erkelens, C., & Verpoorte, R. (2004a). Metabolic fingerprinting of wild type and transgenic tobacco plants by 1H NMR and multivariate analysis techniques. Phytochemistry, 65, 857–864.PubMedGoogle Scholar
  34. Choi, H.-C., Kim, H. K., Linthorst, H. J. M., et al. (2006). NMR metabolomics to revisit the tobacco mosaic virus infection in Nicotiana tobacum leaves. Journal of Natural Products, 69, 742–748.PubMedGoogle Scholar
  35. Choi, Y. H., Tapias, E. C., Kim, H. K., et al. (2004b). Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis. Plant Physiology, 135, 2398–2410.PubMedGoogle Scholar
  36. Chong, W. P. K., Goh, L. T., Reddy, S. G., et al. (2009). Metabolomics profiling of extracellular metabolites in recombinant Chinese hamster ovary fed-batch culture. Rapid Communications in Mass Spectrometry, 23, 3763–3771.PubMedGoogle Scholar
  37. Copping, L. G., & Duke, S. O. (2007). Natural products that have been used commercially as crop protection agents—a review. Pest Management Science, 63, 524–554.PubMedGoogle Scholar
  38. Cuadros-Inostroza, Á., Caldana, C., Redestig, H., et al. (2009). TargetSearch-a Bioconductor package for the efficient preprocessing of GC–MS metabolite profiling data. BMC Bioinformatics, 10, 428.PubMedGoogle Scholar
  39. Cui, Q., Lewis, I. A., Hegeman, A. D., et al. (2008). Metabolite identification via the Madison Metabolomics Consortium Database. Nature Biotechnology, 26, 162–164.PubMedGoogle Scholar
  40. Dai, X., Wang, G., Yang, D. S., et al. (2010). TrichOME: A comparative omics database for plant trichomes. Plant Physiology, 152, 44–54.PubMedGoogle Scholar
  41. Dayan, F. E., Cantrell, C. L., & Duke, S. O. (2009). Natural products in crop protection. Bioorganic and Medicinal Chemistry, 17, 4022–4034.PubMedGoogle Scholar
  42. Defernez, M., & Colquhoun, I. J. (2003). Factors affecting the robustness of metabolite fingerprinting using 1H NMR spectra. Phytochemistry, 62, 1009–1017.PubMedGoogle Scholar
  43. Degtyarenko, K., de Matos, P., Ennis, M., et al. (2008). ChEBI: A database and ontology for chemical entities of biological interest. Nucleic Acids Research, 36, D344–D350.PubMedGoogle Scholar
  44. Demyttenaere, J. C. R., Moriña, R. M., & Sandra, P. (2003). Monitoring and fast detection of mycotoxins-producing fungi based on headspace solid phase microextraction and headspace sorptive extraction of the volatile metabolites. Journal of Chromatography A, 985, 127–135.PubMedGoogle Scholar
  45. Desneux, N., Decourtye, A., & Delpuech, J.-M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52, 81–106.PubMedGoogle Scholar
  46. Dixon, R. A. (2001). Natural products and plant disease resistance. Nature, 411, 843–847.PubMedGoogle Scholar
  47. Dona, A., & Arvanitogiannis, I. S. (2009). Health risks of genetically modified foods. Critical Reviews in Food Science and Nutrition, 49, 164–175.PubMedGoogle Scholar
  48. Duke, S. O. (2005). Taking stock of herbicide-resistant crops ten years after introduction. Pest Management Science, 61, 211–218.PubMedGoogle Scholar
  49. Dunn, W. B. (2008). Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes. Physical Biology, 5, 1–24.Google Scholar
  50. Duran, A. L., Yang, J., Wang, L., & Sumner, L. W. (2003). Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics, 19, 2283–2293.PubMedGoogle Scholar
  51. EFSA. (2005). Guidance document of the scientific panel on genetically modified organisms for the risk assessment of genetically modified plants and derived food feed. EFSA Journal, 99, 1–94.Google Scholar
  52. Ekman, D. R., Keun, H. C., Eads, C. D., et al. (2006). Metabolomic evaluation of rat liver and testis to characterize the toxicity of triazole fungicides. Metabolomics, 2, 63–73.Google Scholar
  53. Eriksson, L., Johansson, E., Kettaneh-Wold, N., & Wold, S. (2001). Multi- and megavariate data analysis. Principles and applications. Umeå, Sweden: Umetrics Academy.Google Scholar
  54. Fahy, E., Sud, M., Cotter, D., & Subramaniam, S. (2007). LIPID MAPS online tools for lipid research. Nucleic Acids Research, 35, W606–W612.PubMedGoogle Scholar
  55. FAO. (1996). Joint FAO/WHO Expert consultation on biotechnology and food safety. Food and Agriculture Organisation of the United Nations. ftp://ftp.fao.org/es/esn/food/biotechnology.pdf.
  56. FAO/WHO. (2000). Safety aspects of genetically modified foods of plant origin. Report of a Joint FAO/WHO Expert Consultation on Foods Derived from Biotechnology. Geneva, Switzerland: WHO. ftp://ftp.fao.org/es/esn/food/gmreport.pdf.
  57. FAO/WHO. (2001). Evaluation of allergenicity of genetically modified foods. Report of a Joint FAO/WHO Expert Consultation on Foods Derived from Biotechnology. http://www.fao.org/es/esn/allergygm.pdf.
  58. Fardet, A., Llorach, R., & Martin, J.-F. (2008). Liquid chromatography-quadrupole time-of-flight (LC-QTOF)-based metabolomic approach reveals new metabolic effects of catechin in rats fed high-fat diets. Journal of Proteome Research, 7, 2388–2398.PubMedGoogle Scholar
  59. Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157–1161.PubMedGoogle Scholar
  60. Fiehn, O., Wohlgemuth, G., & Scholz, M. (2005). Setup and annotation of metabolomic experiments by integrating biological and mass spectrometric metadata. In B. Ludäscher & L. Raschid (Eds.), Data integration in the life sciences-lecture notes in computer science (Vol. 3615, pp. 224–239). Heidelberg: Springer Berlin.Google Scholar
  61. Forgue, P., Halouska, S., Werth, M., Xu, K., Harris, S., & Powers, R. (2006). NMR metabolic profiling of Aspergillus nidulans to monitor drug and protein activity. Journal of Proteome Research, 5, 1916–1923.PubMedGoogle Scholar
  62. Frankart, C., Eullaffroy, P., & Vernet, G. (2002). Photosynthetic responses of Lemna minor exposed to xenobiotics, copper, and their combinations. Ecotoxicology and Environmental Safety, 53, 439–445.PubMedGoogle Scholar
  63. Gaida, A., & Neumann, S. (2007). MetHouse: Raw and preprocessed mass spectrometry data. Journal of Integrative Bioinformatics, 4, 56.Google Scholar
  64. Gao, J., Tarcea, V. G., Karnovsky, A., et al. (2010). Metscape: A Cytoscape plug-in for visualizing and interpreting metabolomic data in the context of human metabolic networks. Bioinformatics, 26, 971–973.PubMedGoogle Scholar
  65. Garcia-Villalba, R., Leon, C., Dinelli, G., et al. (2008). Comparative metabolomic study of transgenic versus conventional soybean using capillary electrophoresis-time-of-flight mass spectrometry. Journal of Chromatography A, 1195, 164–173.PubMedGoogle Scholar
  66. Guillarme, D., Schappler, J., Rudaz, S., & Veuthey, J.-L. (2010). Coupling ultra-high-pressure liquid chromatography with mass spectrometry. Trends in Analytical Chemistry, 29, 15–27.Google Scholar
  67. Günther, S., Kuhn, M., Dunkel, M., et al. (2008). SuperTarget and Matador: Resources for exploring drug-target relationships. Nucleic Acids Research, 36, D919–D922.PubMedGoogle Scholar
  68. Guo, Q., Sidhu, J. K., & Ebbels, T. M. D. (2009). Validation of metabolomics for toxic mechanism of action screening with the earthworm Lumbricus rubellus. Metabolomics, 5, 72–83.Google Scholar
  69. Hall, R. D., Brouwer, I. D., & Fitzgerald, M. A. (2008). Plant metabolomics and its potential application for human nutrition. Physiologia Plantarum, 132, 162–175.PubMedGoogle Scholar
  70. Holt, R. A., Subramanian, G. M., Halpern, A., et al. (2002). The genome sequence of the malaria mosquito Anopheles gambiae. Science, 298, 129–149.PubMedGoogle Scholar
  71. Horai, H., Arita, M., & Nishioka, T. (2008). Comparison of ESI-MS spectra in MassBank database. Proceedings of the International Conference on Biomedical Engineering Informatics, 2, 853–857.Google Scholar
  72. Hu, Q., Noll, R. J., Li, H., et al. (2005). The Orbitrap: A new mass spectrometer. Journal of Mass Spectrometry and Ion Physics, 40, 430–443.Google Scholar
  73. Huang, K., Xia, L., Zhang, Y., Ding, X., & Zahn, J. A. (2009). Recent advances in the biochemistry of spinosyns. Applied Microbiology and Biotechnology, 82, 13–23.PubMedGoogle Scholar
  74. Hunter, P. (2009). Reading the metabolic fine print. The application of metabolomics to diagnostics, drug research and nutrition might be integral to improved health and personalized medicine. EMBO Reports, 10, 20–23.PubMedGoogle Scholar
  75. Iijima, Y., Nakamura, Y., Ogata, Y., et al. (2008). Metabolite annotations based on the integration of mass spectral information. Plant Journal, 54, 949–962.PubMedGoogle Scholar
  76. International Organization for Standardization. (2003). Water quality-Determination of toxic effect of water constituents and waste water to duckweed ( Lemna minor )-Duckweed growth inhibition test. ISO/DIS 20079 (draft). Geneva, Switzerland.Google Scholar
  77. Jansen, J. J., Allwood, J. W., Marsden-Edwards, E., van der Putten, W. H., Goodacre, R., & van Dam, N. M. (2009). Metabolomic analysis of the interaction between plants and herbivores. Metabolomics, 5, 150–161.Google Scholar
  78. Jeschke, P., & Nauen, R. (2008). Neonicotinoids-from zero to hero in insecticide chemistry. Pest Management Science, 64, 1084–1098.PubMedGoogle Scholar
  79. Junker, B. H., Klukas, C., & Schreiber, F. (2006). VANTED: A system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics, 7, 109.PubMedGoogle Scholar
  80. Jutsum, A. R., Heaney, S. P., Bob, M., et al. (1998). Pesticide resistance: Assessment of risk and the development and implementation of effective management strategies. Pesticide Science, 54, 435–446.Google Scholar
  81. Kaddurah-Daouk, R., & Krishnan, K. R. R. (2009). Metabolomics: A global biochemical approach to the study of central nervous system diseases. Neuropsychopharmacology Review, 34, 173–186.Google Scholar
  82. Kaderbhai, N. N., Broadhurst, D. I., Ellis, D. I., Goodacre, R., & Kell, D. B. (2003). Functional genomics via metabolic footprinting: Monitoring metabolite secretion by Escherichia coli tryptophan metabolism mutants using FT-IR and direct injection electrospray mass spectrometry. Comparative and Functional Genomics, 4, 376–391.PubMedGoogle Scholar
  83. Kamleh, M. A., Hobani, Y., Dow, J. A. T., & Watson, D. G. (2008). Metabolomic profiling of Drosophila using liquid chromatography Fourier transform mass spectrometry. FEBS Letter, 582, 2916–2922.Google Scholar
  84. Kanehisa, M., Goto, S., Hattori, M., et al. (2006). From genomics to chemical genomics: New developments in KEGG. Nucleic Acids Research, 34, D354–D357.PubMedGoogle Scholar
  85. Karp, P. D., Ouzounis, C. A., Moore-Kochlacs, C., et al. (2005). Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Research, 33, 6083–6089.PubMedGoogle Scholar
  86. Kastanias, M. A., & Chrysayi-Tokousbalides, M. (2000). Herbicidal potential of pyrenophorol isolated from a Drechslera avenae pathotype. Pest Management Science, 56, 227–232.Google Scholar
  87. Katajamaa, M., Miettinen, J., & Orešič, M. (2006). MZmine: Toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics, 22, 634–636.PubMedGoogle Scholar
  88. Katz, J. E., Dumlao, D. S., Clarke, S., & Hau, J. (2004). A new technique (COMSPARI) to facilitate the identification of minor compounds in complex mixtures by GC/MS and LC/MS: Tools for the visualization of matched datasets. Journal of the American Society for Mass Spectrometry, 15, 580–584.PubMedGoogle Scholar
  89. Kell, D. B., Brown, M., Davey, H. M., Dunn, W. B., Spasic, I., & Oliver, S. G. (2005). Metabolic footprinting and systems biology: The medium is the message. Nature Reviews Microbiology, 3, 557–565.PubMedGoogle Scholar
  90. Kenneke, J. F., Ekman, D. R., Mazur, C. S., et al. (2010). Integration of metabolomics and in vitro metabolism assays for investigating the stereoselective transformation of triadimefon in rainbow trout. Chirality, 22, 183–192.PubMedGoogle Scholar
  91. Kerber, A., Laue, R., Meringer, M., & Varmuza, K. (2001). MOLGEN-MS: Evaluation of low resolution electron impact mass spectra with MS classification and exhaustive structure generation. Advanced Mass Spectrometry, 15, 939–940.Google Scholar
  92. Keseler, I. M., Bonavides-Martinez, C., & Collado-Vides, J. (2009). EcoCyc: A comprehensive view of Escherichia coli biology. Nucleic Acids Research, 37, D464–D470.PubMedGoogle Scholar
  93. Kim, K.-B., Kim, S. H., & Um, S. Y. (2009). Metabolomics approach to risk assessment: Methoxyclor exposure in rats. Journal of Toxicology and Environmental Health, 72, 1352–1368.PubMedGoogle Scholar
  94. Kind, T., & Fiehn, O. (2007). Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics, 8, 105.PubMedGoogle Scholar
  95. Klukas, C., & Schreiber, F. (2007). Dynamic exploration and editing of KEGG pathway diagrams. Bioinformatics, 23, 344–350.PubMedGoogle Scholar
  96. Kopka, J., Schauer, N., Krueger, S., et al. (2005). GMDB@CSB.DB: The Golm Metabolome database. Bioinformatics, 21, 1635–1638.PubMedGoogle Scholar
  97. Kos, M., van Loon, J. J., Dicke, M., & Vet, L. E. (2009). Transgenic plants as vital components of integrated pest management. Trends in Biotechnology, 27, 621–627.PubMedGoogle Scholar
  98. Koulman, A., Woffendin, G., Narayana, V. K., et al. (2009). High-resolution extracted ion chromatography, a new tool for metabolomics and lipidomics using a second-generation Orbitrap mass spectrometer. Rapid Communications in Mass Spectrometry, 23, 1411–1418.PubMedGoogle Scholar
  99. Kralya, J. R., Holcomba, R. E., Guana, Q., & Henry, C. S. (2009). Review: Microfluidic applications in metabolomics and metabolic profiling. Analytica Chimica Acta, 653, 23–35.Google Scholar
  100. Krishnan, P., Kruger, N. J., & Ratcliffe, R. G. (2005). Metabolite fingerprinting and profiling in plants using NMR. Journal of Experimental Botany, 56, 255–265.PubMedGoogle Scholar
  101. Kuhn, M., Szklarczyk, D., Franceschini, A., et al. (2010). STITCH 2: An interaction network database for small molecules and proteins. Nucleic Acids Research, 38, D552–D556.PubMedGoogle Scholar
  102. Lange, L., & Lopez, C. S. (1996). Micro-organisms as a source of biologically active secondary metabolites. In L. G. Copping (Ed.), Crop protection agents from nature. Natural products and analogues (pp. 1–26). Cambridge: The Royal Society of Chemistry.Google Scholar
  103. Le Gall, G., Colquhoun, I. J., Davis, A. L., Collins, G. J., & Verhoeyen, M. E. (2003). Metabolite profiling of tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. Journal of Agriculture and Food Chemistry, 51, 2447–2456.Google Scholar
  104. Lee, S. H., Woo, H. M., & Jung, B. H. (2007). Metabolomic approach to evaluate the toxicological effects of nonylphenol with rat urine. Analytical Chemistry, 79, 6102–6110.PubMedGoogle Scholar
  105. Leiss, K. A., Choi, Y. H., Abdel-Farid, I. B., Verpoorte, R., & Klinkhamer, P. G. L. (2009). NMR metabolomics of thrips (Frankliniella occidentalis) resistance in senecio hybrids. Journal of Chemical Ecology, 35, 219–229.PubMedGoogle Scholar
  106. Leon, C., Rodriguez-Meizoso, I., Lucio, M., et al. (2009). Metabolomics of transgenic maize combining Fourier transform-ion cyclotron resonance-mass spectrometry, capillary electrophoresis-mass spectrometry and pressurized liquid extraction. Journal of Chromatography A, 1216, 7314–7323.PubMedGoogle Scholar
  107. Li, X., Schuler, M. A., & Berenbaum, M. R. (2007). Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology, 52, 231–253.PubMedGoogle Scholar
  108. Lindon, J. C. (2003). HPLC-NMR-MS: Past, present and future. Drug Discovery Today, 8, 1021–1022.PubMedGoogle Scholar
  109. Lindon, J. C., Holmes, E., & Nicholson, J. K. (2007). Metabonomics in pharmaceutical R&D. FEBS Journal, 274, 1140–1151.PubMedGoogle Scholar
  110. Lindon, J. C., Keun, H. C., Ebbels, T. M., Pearce, J. M., Holmes, E., & Nicholson, J. K. (2005). The consortium for metabonomic toxicology (COMET): Aims, activities and achievements. Pharmacogenomics, 6, 691–699.PubMedGoogle Scholar
  111. Lindon, J. C., & Nicholson, J. K. (2008a). Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics. Annual Review of Analytical Chemistry, 1, 45–69.PubMedGoogle Scholar
  112. Lindon, J. C., & Nicholson, J. K. (2008b). Analytical technologies for metabonomics and metabolomics, and multi-omic information recovery. Trends in Analytical Chemistry, 27, 194–204.Google Scholar
  113. Lindon, J. C., Nicholson, J. K., & Wilson, I. D. (2000). Directly coupled HPLC-NMR and HPLC-NMR-MS in pharmaceutical research and development. Journal of Chromatography B: Biomedical Sciences and Applications, 748, 233–258.Google Scholar
  114. Linstrom, P. J., & Mallard, W. G. (2001). The NIST Chemistry WebBook: A chemical data resource on the internet. Journal of Chemical & Engineering Data, 46, 1059–1063.Google Scholar
  115. Liu, Y., Wen, J., Wang, Y., Li, Y., & Xu, W. (2010). Postulating modes of action of compounds with antimicrobial activities through metabolomics analysis. Chromatographia, 71, 253–258.Google Scholar
  116. López-Gresa, M. P., Maltese, F., Bellés, J. M., et al. (2010). Metabolic response of tomato leaves upon different plant-pathogen interactions. Phytochemical Analysis, 21, 89–94.PubMedGoogle Scholar
  117. Lv, Y., Liu, X., Yan, S., et al. (2010). Metabolomic study of myocardial ischemia and intervention effects of compound Danshen tablets in rats using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 52, 129–135.PubMedGoogle Scholar
  118. Ma, Z., & Michailides, T. J. (2005). Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection, 24, 853–863.Google Scholar
  119. Malmendal, A., Overgaard, J., Bundy, J. G., et al. (2006). Metabolomic profiling of heat stress: Hardening and recovery of homeostasis in Drosophila. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 291, 205–212.Google Scholar
  120. Manetti, C., Bianchetti, C., Casciani, L., et al. (2006). A metabonomic study of transgenic maize (Zea mays) seeds revealed variations in osmolytes and branched amino acids. Journal of Experimental Botany, 57, 2613–2625.PubMedGoogle Scholar
  121. Markley, J. L. (2007). NMR analysis goes nano. Nature Biotechnology, 25, 750–751.PubMedGoogle Scholar
  122. Mas, S., Villas-Bôas, S. G., Hansen, M. E., Åkesson, M., & Nielsen, J. (2007). A comparison of direct infusion MS and GC–MS for metabolic footprinting of yeast mutants. Biotechnology and Bioengineering, 96, 1014–1022.PubMedGoogle Scholar
  123. Masciocchi, J., Frau, G., Fanton, M., et al. (2009). MMsINC: A large-scale chemoinformatics database. Nucleic Acids Research, 37, 284–290.Google Scholar
  124. McKelvie, J. R., Yuk, J., Xu, Y., Simpson, A. J., & Simpson, M. J. (2009). 1H NMR and GC/MS metabolomics of earthworm responses to sub-lethal DDT and endosulfan exposure. Metabolomics, 5, 84–94.Google Scholar
  125. Michel, A., Johnson, R. D., Duke, S. O., & Scheffler, B. E. (2004). Dose-response relationships between herbicides with different modes of action and growth of Lemna paucicostata: An improved ecotoxicological method. Environmental Toxicology and Chemistry, 23, 1074–1079.PubMedGoogle Scholar
  126. Miller, M. G. (2007). Environmental metabolomics: A SWOT analysis (strengths, weaknesses, opportunities, and threats). Journal of Proteome Research, 6, 540–545.PubMedGoogle Scholar
  127. Mirnezhad, M., Romero-González, R. R., Leiss, K. A., Choi, Y. H., Verpoorte, R., & Klinkhamer, P. G. L. (2010). Metabolomic analysis of host plant resistance to thrips in wild and cultivated tomatoes. Phytochemical Analysis, 21, 110–117.PubMedGoogle Scholar
  128. Moco, S., Forshed, J., De Vos, R. C. H., et al. (2008). Intra- and inter-metabolite correlation spectroscopy of tomato metabolomics data obtained by liquid chromatography–mass spectrometry and nuclear magnetic resonance. Metabolomics, 4, 202–215.Google Scholar
  129. Mohan, B. S., & Hosetti, B. B. (1999). Aquatic plants for toxicity assessment. Environmental Research, 81, 259–274.PubMedGoogle Scholar
  130. Mohler, R. E., Dombek, K. M., Hoggard, J. C., Pierce, K. M., Young, E. T., & Synovec, R. E. (2007). Comprehensive analysis of yeast metabolite GC×GC-TOFMS data: Combining discovery-mode and deconvolution chemometric software. Analyst, 132, 756–767.PubMedGoogle Scholar
  131. Monton, M. R. N., & Soga, T. (2007). Metabolome analysis by capillary electrophoresis-mass spectrometry. Journal of Chromatography A, 1168, 237–246.PubMedGoogle Scholar
  132. Nauen, R., & Bretschneider, T. (2002). New modes of action of insecticides. Pesticide Outlook, 13, 241–245.Google Scholar
  133. OECD. (1993). Safety evaluation of foods derived by modern biotechnology, concepts and principles. Organisation for Economic Cooperation and Development. http://www.agbios.com/docroot/articles/oecd_fsafety_1993.pdf.
  134. OECD. (2002a). Guidelines for the testing of chemicals. Revised proposal for a new guideline 221, Lemna sp. growth inhibition test. http://www.oecd.org/dataoecd/16/51/1948054.pdf.
  135. OECD. (2002b). Module II: Herbicide biochemistry, herbicide metabolism and the residues in glufosinate-ammonium (phosphinothricin)-tolerant transgenic plants. Series on harmonization of regulatory oversight in biotechnology No. 25 http://www.olis.oecd.org/olis/2002doc.nsf/LinkTo/env-jm-mono(2002)14.
  136. Ohta, T., Masutomi, N., Tsutsui, N., et al. (2009). Untargeted metabolomic profiling as an evaluative tool of fenofibrate-induced toxicology in Fischer 344 male rats. Toxicologic Pathology, 37, 521–535.PubMedGoogle Scholar
  137. Oikawa, A., Nakamura, Y., Ogura, T., et al. (2006). Clarification of pathway-specific inhibition by Fourier transform ion cyclotron resonance/mass spectrometry-based metabolic phenotyping studies. Plant Physiology, 142, 398–413.PubMedGoogle Scholar
  138. Okada, T., Nakamura, Y., Kanaya, S., et al. (2009). Metabolome analysis of ephedra plants with different contents of ephedrine alkaloids by using UPLC-Q-TOF-MS. Planta Medica, 75, 1356–1362.PubMedGoogle Scholar
  139. Ott, K. H., Aranibar, N., Singh, B., & Stockton, G. W. (2003). Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts. Phytochemistry, 62, 971–985.PubMedGoogle Scholar
  140. Ott, M. A., & Vriend, G. (2006). Correcting ligands, metabolites, and pathways. BMC Bioinformatics, 7, 517.PubMedGoogle Scholar
  141. Owen, M. D. K., & Zelaya, I. A. (2005). Herbicide-resistant crops and weed resistance to herbicides. Pest Management Science, 61, 301–311.PubMedGoogle Scholar
  142. Pandher, R., Ducruix, C., Eccles, S. A., & Raynaud, F. I. (2009). Cross-platform Q-TOF validation of global exo-metabolomic analysis: Application to human glioblastoma cells treated with the standard PI 3-Kinase inhibitor LY294002. The Journal of Chromatography B, 877, 1352–1358.Google Scholar
  143. Pedersen, K. S., Kristensen, T. N., Loeschcke, V., et al. (2008). Metabolomic signatures of inbreeding at benign and stressful temperatures in Drosophila melanogaster. Genetics, 180, 1233–1243.PubMedGoogle Scholar
  144. Piccioni, F., Capitani, D., Zolla, L., & Mannina, L. (2009). NMR metabolic profiling of transgenic maize with the Cry1Ab gene. Journal of Agriculture and Food Chemistry, 57, 6041–6049.Google Scholar
  145. Poole, R. L. (2008). The TAIR Database. In D. Edwards (Ed.), Methods in molecular biology, plant bioinformatics: Methods and protocols (pp. 179–212). Totowa, NJ: Humana Press Inc.Google Scholar
  146. Raamsdonk, L. M., Teusink, B., & Broadhurst, D. (2001). A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnology, 19, 45–50.PubMedGoogle Scholar
  147. Ramautar, R., Demirci, A., & de Jong, G. J. (2006). Capillary electrophoresis in metabolomics. Trends in Analytical Chemistry, 25, 455–466.Google Scholar
  148. Ratcliffe, R. G., & Shachar-Hill, Y. (2001). Probing plant metabolism with NMR. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 499–526.PubMedGoogle Scholar
  149. REACH. (2006). Registration, evaluation, authorisation and restriction of chemicals REACH, regulation no. 1907/2006. The European Parliament and The Council of The European Union.Google Scholar
  150. Richards, S., Liu, Y., Bettencourt, B. R., et al. (2005). Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution. Genome Research, 15, 1–18.PubMedGoogle Scholar
  151. Robertson, D. G. (2005). Metabonomics in toxicology: A review. Toxicological Sciences, 85, 809–822.PubMedGoogle Scholar
  152. Robertson, D. G., Reily, M. D., Sigler, R. E., Wells, D. F., Paterson, D. A., & Braden, T. K. (2000). Metabonomics: Evaluation of nuclear magnetic resonance (NMR) and pattern recognition technology for rapid in vivo screening of liver and kidney toxicants. Toxicological Sciences, 57, 326–337.PubMedGoogle Scholar
  153. Rosania, G. R., Crippen, G., Woolf, P., States, D., & Shedden, K. (2007). A cheminformatic toolkit for mining biomedical knowledge. Pharmaceutical Research, 24, 1791–1802.PubMedGoogle Scholar
  154. Ruhland, M., Engelhardt, G., & Pawlizki, K. (2004). Distribution and metabolism of d/l-, l- and d-glufosinate in transgenic, glufosinate tolerant crops of maize (Zea mays L spp mays) and oilseed rape (Brassica napus L. var napus). Pest Management Science, 60, 691–696.PubMedGoogle Scholar
  155. Sansone, S.-A., Fan, T., Goodacre, R., et al. (2007). The metabolomics standards initiative. Nature Biotechnology, 25, 846–848.PubMedGoogle Scholar
  156. Schellenberger, J., Park, J. O., Conrad, T. C., & Palsson, B. Ø. (2010). BiGG: A biochemical genetic and genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics, 11, 213.PubMedGoogle Scholar
  157. Schneider, D. (2000). Using drosophila as a model insect. Nature Reviews, 1, 218–226.PubMedGoogle Scholar
  158. Scholz, M., & Fiehn, O. (2007). SetupX-a public study design database for metabolomic projects. Pacific Symposium on Biocomputing, 12, 169–180.Google Scholar
  159. Shannon, P., Markiel, A., Ozier, O., et al. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504.PubMedGoogle Scholar
  160. Shinbo, Y., Nakamura, Y., Altaf-Ul-Amin, M., et al. (2006). KNApSAcK: A comprehensive species-metabolite relationship database. Biotechnology in Agriculture and Forestry, 57, 166–181.Google Scholar
  161. Smedsgaard, J., & Nielsen, J. (2005). Metabolite profiling of fungi and yeast: From phenotype to metabolome by MS and informatics. Journal of Experimental Botany, 56, 273–286.PubMedGoogle Scholar
  162. Smith, C. A., O’Maille, G., Want, E. J., et al. (2005). METLIN: A metabolite mass spectral database. Therapeutic Drug Monitoring, 27, 747–751.PubMedGoogle Scholar
  163. Smith, C. A., Want, E. J., O’Maille, G., Tong, G. C., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787.PubMedGoogle Scholar
  164. Soga, T., Ohashi, Y., Ueno, Y., Naraoka, H., Tomita, M., & Nishioka, T. (2003). Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. Journal of Proteome Research, 2, 488–494.PubMedGoogle Scholar
  165. Sorrell, T. C., Wright, L. C., Malik, R., & Himmelreich, U. (2006). Application of proton nuclear magnetic resonance spectroscopy to the study of Cryptococcus and cryptococcosis. FEMS Yeast Research, 6, 558–566.PubMedGoogle Scholar
  166. Spratlin, J. L., Serkova, N. J., & Eckhardt, S. G. (2009). Clinical applications of metabolomics in oncology: A review. Clinical Cancer Research, 15, 431–440.PubMedGoogle Scholar
  167. Suhre, K., & Schmitt-Kopplin, P. (2008). MassTRIX: Mass translator into pathways. Nucleic Acids Research, 36, W481–W484.PubMedGoogle Scholar
  168. Sumner, L. W., Amberg, A., Barrett, D., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221.Google Scholar
  169. Sun, B., Li, L., Wua, S., et al. (2009). Metabolomic analysis of biofluids from rats treated with Aconitum alkaloids using nuclear magnetic resonance and gas chromatography/time-of-flight mass spectrometry. Analytical Biochemistry, 395, 125–133.PubMedGoogle Scholar
  170. Taguchi, R., Nishijima, M., & Shimizu, T. (2007). Basic analytical systems for lipidomics by mass spectrometry in Japan. Methods in Enzymology, 432, 185–211.PubMedGoogle Scholar
  171. Takahashi, H., Kai, K., Shinbo, Y., et al. (2008). Metabolomics approach for determining growth-specific metabolites based on Fourier transform ion cyclotron resonance mass spectrometry. Analytical and Bioanalytical Chemistry, 391, 2769–2782.PubMedGoogle Scholar
  172. Tan, S., Evans, R., & Singh, B. (2006). Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. Amino Acids, 30, 195–204.PubMedGoogle Scholar
  173. Taylor, C. F., Field, D., Sansone, S.-A., et al. (2008). Promoting coherent minimum reporting guidelines for biological and biomedical investigations: The MIBBI project. Nature Biotechnology, 26, 889–896.PubMedGoogle Scholar
  174. Taylor, N. S., Weber, R. J. M., Southam, A. D., et al. (2009). A new approach to toxicity testing in Daphnia magna: Application of high throughput FT-ICR mass spectrometry metabolomics. Metabolomics, 5, 44–58.Google Scholar
  175. Thimm, O., Bläsing, O., Gibon, Y., et al. (2004). MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant Journal, 37, 914–939.PubMedGoogle Scholar
  176. Thompson, G. D., Dutton, R., & Sparks, T. C. (2000). Spinosad-a case study: An example from a natural products discovery programme. Pest Management Science, 56, 696–702.Google Scholar
  177. Tokimatsu, T., Sakurai, N., Suzuki, H., et al. (2005). KaPPA-View. A web-based analysis tool for integration of transcript and metabolite data on plant metabolic pathway maps. Plant Physiology, 138, 1289–1300.PubMedGoogle Scholar
  178. Toyoda, T., & Wada, A. (2004). Omic space: Coordinate-based integration and analysis of genomic phenomic interactions. Bioinformatics, 20, 1759–1765.PubMedGoogle Scholar
  179. Trethewey, R. N., Krotzky, A. J., & Willmitzer, L. (1999). Metabolic profiling: A Rosetta stone for genomics? Current Opinion in Plant Biology, 2, 83–85.PubMedGoogle Scholar
  180. Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures (OPLS). Journal of Chemometrics, 16, 119–128.Google Scholar
  181. van Dam, N. M., & Raaijmakers, C. E. (2006). Local and systemic induced responses to cabbage root fly larvae (Delia radicum) in Brassica nigra and B. oleracea. Chemoecology, 16, 17–24.Google Scholar
  182. van Iersel, M. P., Kelder, T., & Pico, A. R. (2008). Presenting and exploring biological pathways with PathVisio. BMC Bioinformatics, 9, 399.PubMedGoogle Scholar
  183. van Ravenzwaay, B., Cunha, G. C.-P., Leibold, E., et al. (2007). The use of metabolomics for the discovery of new biomarkers of effect. Toxicology Letters, 172, 21–28.PubMedGoogle Scholar
  184. van Vliet, E., Morath, S., Eskes, C., et al. (2008). A novel in vitro metabolomics approach for neurotoxicity testing, proof of principle for methyl mercury chloride and caffeine. Neurotoxicology, 29, 1–12.PubMedGoogle Scholar
  185. Vastrik, I., D’Eustachio, P., Schmidt, E., et al. (2007). Reactome: A knowledge base of biologic pathways and processes. Genome Biology, 8, R39.PubMedGoogle Scholar
  186. Viant, M. R., Bearden, D. W., Bundy, J. G., et al. (2009). International NMR-based environmental metabolomics intercomparison exercise. Environmental Science and Technology, 43, 219–225.PubMedGoogle Scholar
  187. Viant, M. R., Ludwig, C., & Günter, U. L. (2008). 1D and 2D NMR spectroscopy: From metabolic fingerprinting to profiling. In W. J. Griffiths (Ed.), Metabolomics, metabonomics and metabolic profiling (pp. 44–70). Cambridge, UK: RSC Publishing.Google Scholar
  188. Viant, M. R., Pincetich, C. A., Hinton, D. E., & Tjeerdema, R. S. (2006a). Toxic actions of dinoseb in medaka (Oryzias latipes) embryos as determined by in vivo 31P NMR, HPLC–UV and 1H NMR metabolomics. Aquatic Toxicology, 76, 329–342.PubMedGoogle Scholar
  189. Viant, M. R., Pincetich, C. A., & Tjeerdema, R. S. (2006b). Metabolic effects of dinoseb, diazinon and esfenvalerate in eyed eggs and alevins of Chinook salmon (Oncorhynchus tshawytscha) determined by 1H NMR metabolomics. Aquatic Toxicology, 77, 359–371.PubMedGoogle Scholar
  190. Villas-Bôas, S. G., Mas, S., Akesson, M., Smedsgaard, J., & Nielsen, J. (2005). Mass spectrometry in metabolome analysis. Mass Spectrometry Reviews, 24, 613–646.PubMedGoogle Scholar
  191. Vinayavekhin, N., Homan, E. A., & Saghatelian, A. (2010). Exploring disease through metabolomics. ACS Chemical Biology, 5, 91–103.PubMedGoogle Scholar
  192. Ward, J. L., Baker, J. M., & Beale, M. H. (2007). Recent applications of NMR spectroscopy in plant metabolomics. FEBS Journal, 274, 1126–1131.PubMedGoogle Scholar
  193. Ward, J. L., Baker, J. M., & Miller, S. J. (2010). An inter-laboratory comparison demonstrates that [1H]-NMR metabolite fingerprinting is a robust technique for collaborative plant metabolomic data collection. Metabolomics. doi:10.1007/s11306-010-0200-4.
  194. Ward, E., & Bernasconi, P. (1999). Target-based discovery of crop protection chemicals. Nature Biotechnology, 17, 618–619.PubMedGoogle Scholar
  195. Warne, M. A., Lenz, E. M., Osborn, D., Weeks, J. M., & Nicholson, J. K. (2000). An NMR-based metabonomic investigation of the toxic effects of 3-trifluoromethyl-aniline on the earthworm Eisenia veneta. Biomarkers, 5, 56–72.Google Scholar
  196. Werner, E., Croixmarie, V., Umbdenstock, T., et al. (2008). Mass spectrometry-based metabolomics: Accelerating the characterization of discriminating signals by combining statistical correlations and ultrahigh resolution. Analytical Chemistry, 80, 4918–4932.PubMedGoogle Scholar
  197. Widarto, H. T., van Der Meijden, E., Lefeber, A. W. M., et al. (2006). Metabolomic differentiation of Brassica rapa following herbivory by different insect instars using two-dimensional nuclear magnetic resonance spectroscopy. Journal of Chemical Ecology, 32, 2417–2428.PubMedGoogle Scholar
  198. Williams, A. (1997). Chiral pesticides. Pesticide Outlook, 8, 15–19.Google Scholar
  199. Wind, R. A., Hu, J. Z., & Majors, P. D. (2005). Slow-MAS NMR: A new technology for in vivo metabolomic studies. Drug Discovery Today: Technologies, 2, 291–294.Google Scholar
  200. Wishart, D. S. (2008). Quantitative metabolomics using NMR. Trends in Analytical Chemistry, 27, 228–237.Google Scholar
  201. Wishart, D. S., Knox, C., & Guo, A. C. (2006). DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research, 34, D668–D672.PubMedGoogle Scholar
  202. Wishart, D. S., Tzur, D., Knox, C., et al. (2007). HMDB: The Human Metabolome Database. Nucleic Acids Research, 35, D521–D526.PubMedGoogle Scholar
  203. Woo, H. M., Kim, K. M., Choi, M. H., et al. (2009). Mass spectrometry based metabolomic approaches in urinary biomarker study of women’s cancers. Clinica Chimica Acta, 400, 63–69.Google Scholar
  204. Xia, J., Psychogios, N., Young, N., & Wishart, D. S. (2009). MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37, W652–W660.PubMedGoogle Scholar
  205. Yi, Z.-B., Yu, Y., Liang, Y.-Z., & Zeng, B. (2007). Evaluation of the antimicrobial mode of berberine by LC/ESI-MS combined with principal component analysis. Journal of Pharmaceutical and Biomedical Analysis, 44, 301–304.PubMedGoogle Scholar
  206. Yu, Y., Yi, Z.-b., & Liang, Y.-Z. (2007). Main antimicrobial components of Tinospora capillipes, and their mode of action against Staphylococcus aureus. FEBS Letter, 581, 4179–4183.Google Scholar
  207. Zhang, P., Foerster, H., Tissier, C. P., et al. (2005). MetaCyc and AraCyc. Metabolic pathway databases for plant research. Plant Physiology, 138, 27–37.PubMedGoogle Scholar
  208. Zhou, J., Ma, C., & Xu, H. (2009). Metabolic profiling of transgenic rice with cryIAc and sck genes: An evaluation of unintended effects at metabolic level by using GC–FID and GC–MS. The Journal of Chromatography B, 877, 725–732.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Konstantinos A. Aliferis
    • 1
  • Maria Chrysayi-Tokousbalides
    • 2
  1. 1.Department of Plant ScienceMcGill UniversitySainte-Anne-de-BellevueCanada
  2. 2.Pesticide Science LaboratoryAgricultural University of AthensAthensGreece

Personalised recommendations