, Volume 6, Issue 4, pp 583–594 | Cite as

Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain in the diet of dairy cows

  • Burim N. Ametaj
  • Qendrim Zebeli
  • Fozia Saleem
  • Nikolaos Psychogios
  • Michael J. Lewis
  • Suzanna M. Dunn
  • Jianguo Xia
  • David S. Wishart
Original Article


This study presents the first application of metabolomics to evaluate changes in rumen metabolites of dairy cows fed increasing proportions of barley grain (i.e., 0, 15, 30, and 45% of diet dry matter). 1H-NMR spectroscopy was used to analyze rumen fluid samples representing 4 different diets. Results showed that for cows fed 30 and 45% grain, increases were observed in the concentration of rumen methylamine as well as glucose, alanine, maltose, propionate, uracil, valerate, xanthine, ethanol, and phenylacetate. These studies also revealed lower rumen 3-phenylpropionate in cows fed greater amounts of cereal grain. Furthermore, ANOVA tests showed noteworthy increases in rumen concentrations of N-nitrosodimethylamine, dimethylamine, lysine, leucine, phenylacetylglycine, nicotinate, glycerol, fumarate, butyrate, and valine with an enriched grain diet. Using principal component analysis it was also found that each of the 4 diets could be distinguished on the basis of the measured rumen metabolites. The two closest clusters corresponded to the 0 and 15% grain diets, whereas the 45% barley grain diet was significantly separated from the other clusters. Unhealthly levels of a number of potentially toxic metabolites were found in the rumen of cattle fed 30 and 45% grain diets. These results may have a number of implications regarding the influence of grain on the overall health of dairy cows.


Rumen metabolic profile NMR Dairy cow Principal component analysis Hierarchical clustering analysis Barley grain 



We acknowledge co-leading of the project entitled ‘Profiling of Dairy Cattle Metabolome’ by Drs. Ametaj and Wishart, which was supported financially by the Alberta Agricultural Research Institute (AARI; Edmonton, Alberta, Canada), the Alberta Livestock Industry Development Fund (ALIDF; Edmonton, Alberta, Canada), and the Natural Sciences and Engineering Research Council of Canada (NSERC; Ottawa, Ontario, Canada). The technical assistance of D. G. V. Emmanuel, R. P. Pandian, and S. Sivaraman (University of Alberta, Edmonton, Alberta, Canada) is highly appreciated. We also are grateful to the technical staff of Dairy Research and Technology Centre at the University of Alberta for their help and care to the cows used in this study.

Supplementary material

11306_2010_227_MOESM1_ESM.doc (32 kb)
Supplementary material 1 (DOC 32 kb)


  1. Allison, M. J., Dougherty, R. W., Bucklin, J. A., & Snyder, E. E. (1964). Ethanol accumulation in the rumen after overfeeding with readily fermentable carbohydrate. Science, 144, 54–55.CrossRefPubMedGoogle Scholar
  2. Ametaj, B. N., Bradford, B. J., Bobe, G., Nafikov, R. A., Lu, Y., Young, J. W., et al. (2005). Strong relationships between mediators of the acute phase response and fatty liver in dairy cows. Canadian Journal of Animal Science, 85, 165–175.Google Scholar
  3. Andries, J. I., Buysse, F. X., Debrabander, D. L., & Cottyn, B. G. (1987). Isoacids in ruminant nutrition: their role in ruminal and intermediary metabolism and possible influences on performances—a review. Animal Feed Science and Technology, 18, 169–180.CrossRefGoogle Scholar
  4. Bertram, H. C., Kristensen, N. B., Malmendal, A., Nielsen, N. C., Brod, R., Andersen, H. J., et al. (2005). A metabolomic investigation of splanchnic metabolism using 1H NMR spectroscopy of bovine blood plasma. Analytica Chimica Acta, 536, 1–6.CrossRefGoogle Scholar
  5. Bertram, H. C., Kristensen, N. B., Vestergaard, M., Jensen, S. K., Sehested, J., Nielsen, N. C., et al. (2009). Metabolic characterization of rumen epithelial tissue from dairy calves fed different starter diets using 1H NMR spectroscopy. Livestock Science, 120, 127–134.CrossRefGoogle Scholar
  6. Boudonck, K. J., Mitchell, M. W., Wulff, J., & Ryals, J. A. (2010). Characterization of the biochemical variability of bovine milk using metabolomics. Metabolomics. doi: 10.1007/s11306-009-0160-8.Google Scholar
  7. Broadhurst, D. I., & Kell, D. B. (2006). Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics, 2, 171–196.CrossRefGoogle Scholar
  8. Bugaut, M. (1987). Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comparative Biochemistry and Physiology, 86B, 439–472.Google Scholar
  9. Burlingame, R., & Chapman, P. J. (1983). Catabolism of phenylpropionic acid and its 3-hydroxy derivative by Escherichia coli. Journal of Bacteriology, 155, 113–121.PubMedGoogle Scholar
  10. Canadian Council on Animal Care. (1993). Guide to the care and use of experimental animals (2nd ed., Vol. 1). Ottawa: CCAC.Google Scholar
  11. Chesson, A., Provan, G. J., Russell, W. R., Scobbie, L., Richardson, A. J., & Stewart, C. (1999). Hydroxycinnamic acids in the digestive tract of livestock and humans. Journal of the Science of Food and Agriculture, 79, 373–378.CrossRefGoogle Scholar
  12. Davis, E. J., & De Ropp, R. S. (1961). Metabolic origin of urinary methylamine in the rat. Nature, 190, 636–637.CrossRefPubMedGoogle Scholar
  13. Dieterle, F., Ross, A., Schlotterbeck, G., & Senn, H. (2006). Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Analytical Chemistry, 78, 4281–4290.CrossRefPubMedGoogle Scholar
  14. Dumas, M.-E., Barton, R. H., Toye, A., Cloarec, O., Blancher, Ch., Rothwell, A., et al. (2006). Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proceedings of National Academy of Sciences USA, 103, 12511–12516.CrossRefGoogle Scholar
  15. Emmanuel, D. G. V., Dunn, S. M., & Ametaj, B. N. (2008). Feeding high proportions of barley grain stimulates an inflammatory response in dairy cows. Journal of Dairy Science, 91, 606–614.CrossRefPubMedGoogle Scholar
  16. Enomoto, N., Ikejima, K., Yamashina, S., Hirose, M., Shimizu, H., Kitamura, T., et al. (2001). Kupffer cell sensitization by alcohol involves increased permeability to gut-derived endotoxin. Alcoholism, Clinical and Experimental Research, 25, 51S–54S.CrossRefPubMedGoogle Scholar
  17. Estruch, R., Nicolás, J. M., Villegas, E., Jonqué, A., & Urbano-Márquez, A. (1993). Relationship between ethanol-related diseases and nutritional status in chronically alcoholic men. Alcohol and Alcoholism, 28, 543–550.PubMedGoogle Scholar
  18. Gould, G. W. (1970). Germination and the problem of dormancy. Journal of Applied Bacteriology, 33, 34–49.PubMedGoogle Scholar
  19. Hashimoto, S., Kawai, Y., & Mutai, M. (1975). In vitro N-nitrosodimethylamine formation by some bacteria. Infection and Immunity, 11, 1405–1406.PubMedGoogle Scholar
  20. Hill, K. J., & Mangan, J. L. (1964). The formation and distribution of methylamine in the ruminant digestive tract. Biochemistry Journal, 93, 39–45.Google Scholar
  21. Hoogenraad, N. J., & Hird, F. J. R. (1970). The chemical composition of rumen bacteria and cell walls from rumen bacteria. British Journal of Nutrition, 24, 119–127.CrossRefPubMedGoogle Scholar
  22. Iqbal, S., Zebeli, Q., Mazzolari, A., Bertoni, G., Dunn, S. M., et al. (2009). Feeding barley grain steeped in lactic acid modulates rumen fermentation patterns and increases milk fat content in dairy cows. Journal of Dairy Science, 92, 6023–6032.CrossRefPubMedGoogle Scholar
  23. Jenkins, T. C., & McGuire, M. A. (2006). Major advances in nutrition: impact on milk composition. Journal of Dairy Science, 89, 1302–1310.CrossRefPubMedGoogle Scholar
  24. Johnson, K. A., & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science, 73, 2483–2492.PubMedGoogle Scholar
  25. Khafipour, E., Li, S., Plaizier, J. C., & Krause, D. O. (2009). Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Applied and Environmental Microbiology, 75, 7115–7124.CrossRefPubMedGoogle Scholar
  26. Koppang, N. (1964). An outbreak of toxic liver injury in ruminants. Nord Veterinaermed, 16, 305–322.Google Scholar
  27. Kristensen, N. B., Storm, A., Raun, B. M., Røjen, B. A., & Harmon, D. L. (2007). Metabolism of silage alcohols in lactating dairy cows. Journal of Dairy Science, 90, 1364–1377.CrossRefPubMedGoogle Scholar
  28. Lijinsky, W. (1999). N-Nitroso compounds in the diet. Mutation Research, 443, 129–138.PubMedGoogle Scholar
  29. Littell, R. C., Henry, P. R., & Ammerman, C. B. (1998). Statistical analysis of repeated measures data using SAS procedures. Journal of Animal Science, 76, 1216–1231.PubMedGoogle Scholar
  30. Martin, A. K. (1982). The origin of urinary aromatic compounds excreted by ruminants 3. The metabolism of phenolic compounds to simple phenols. British Journal of Nutrition, 48, 497–507.CrossRefPubMedGoogle Scholar
  31. McAllan, A. B., & Smith, R. H. (1973). Degradation of nucleic acids in the rumen. British Journal of Nutrition, 29, 331–345.CrossRefPubMedGoogle Scholar
  32. Neill, A. R., Grime, D. W., & Dawson, R. M. (1978). Conversion of choline methyl groups through trimethylamine into methane in the rumen. Biochemistry Journal, 170, 529–535.Google Scholar
  33. Nocek, J. E. (1997). Bovine acidosis: implications on laminitis. Journal Dairy Science, 80, 1005–1028.CrossRefGoogle Scholar
  34. NRC. (2001). Nutrient requirements of dairy cattle (7th rev. edn). National Academy of Sciences, Washington, DC.Google Scholar
  35. Örlygsson, J., Anderson, R., & Svensson, B. H. (1995). Alanine as an end product during fermentation of monosaccharides by Clostridium strain P2. Antonie van Leeuwenhoek, 68, 273–280.CrossRefPubMedGoogle Scholar
  36. Pagella, J. H. (1998). Urinary benzylated compounds as potential markers of forage intake and metabolism of their precursors in ruminants. PhD Dissertation, Aberdeen University, UK.Google Scholar
  37. Pruett, B. S., & Pruett, S. B. (2006). An explanation for the paradoxical induction and suppression of an acute phase response by ethanol. Alcohol, 39, 105–110.CrossRefPubMedGoogle Scholar
  38. Rieu-Lesme, F., Dauga, C., Morvan, B., Bouvet, O. M. M., Grimont, P. A. D., & Doré, J. (1996). Acetogenic sporulating cocci isolated from the rumen. Research in Microbiology, 147, 753–764.CrossRefPubMedGoogle Scholar
  39. Satter, L. D., & Esdale, W. J. (1968). In vitro lactate metabolism by ruminal ingesta. Applied Microbiology, 16, 680–688.PubMedGoogle Scholar
  40. Saude, E. J., Slupsky, C. M., & Sykes, B. D. (2006). Optimization of NMR analysis of biological fluids for quantitative accuracy. Metabolomics, 2, 113–123.CrossRefGoogle Scholar
  41. Seo, J. (2005). Information visualization design for multidimensional data: integrating the rank-by-feature framework with hierarchical clustering. Ph.D. Dissertation, University of Maryland.Google Scholar
  42. Slyter, L. L. (1976). Influence of acidosis on rumen function. Journal of Animal Science, 43, 910–929.PubMedGoogle Scholar
  43. Souliotis, V. L., Henneman, J. R., Reed, C. D., Chhabra, S. K., Diwan, B. A., Anderson, L. M., et al. (2002). DNA adducts and liver DNA replication in rats during chronic exposure to N-nitrosodimethylamine (NDMA) and their relationships to the dose-dependence of NDMA hepatocarcinogenesis. Mutation Research, 500, 75–87.PubMedGoogle Scholar
  44. Tajima, K., Arai, S., Ogata, K., Nagamine, T., Matsui, H., Nakamura, M., et al. (2000). Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe, 6, 273–284.CrossRefGoogle Scholar
  45. Trent, M. S., Stead, C. M., Tran, A. X., & Hankins, J. V. (2006). Diversity of endotoxin and its impact on pathogenesis. Journal of Endotoxin Research, 12, 205–223.CrossRefPubMedGoogle Scholar
  46. Turlin, E., Perrotte, M., Danchin, A., & Biville, F. (2001). Regulation of the early steps of 3-phenylpropionate catabolism in Escherichia coli. Journal of Molecular Microbiology and Biotechnology, 3, 127–133.PubMedGoogle Scholar
  47. Turlin, E., Sismeiro, O., Le Caer, J. P., Labas, V., Danchin, A., & Biville, F. (2005). 3-phenylpropionate catabolism and the Escherichia coli oxidative stress response. Research in Microbiology, 156, 312–321.CrossRefPubMedGoogle Scholar
  48. Vinayavekhin, N., Homan, E. A., & Saghatelian, A. (2010). Exploring disease through metabolomics. American Chemical Society Chemical Biology, 5, 91–103.PubMedGoogle Scholar
  49. Weljie, A. M., Newton, J., Mercier, P., Carlson, E., & Slupsky, C. M. (2006). Targeted profiling: Quantitative analysis of 1H NMR metabolomics data. Analytical Chemistry, 78, 4430–4442.CrossRefPubMedGoogle Scholar
  50. Wishart, D. S. (2008a). Metabolomics: Applications to food science and nutrition research. Trends in Food Science and Technology, 19, 482–493.CrossRefGoogle Scholar
  51. Wishart, D. S. (2008b). Quantitative metabolomics using NMR. Trends in Analytical Chemistry, 27, 228–237.CrossRefGoogle Scholar
  52. Wishart, D. S., Lewis, M. J., Morrissey, J. A., Flegel, M. D., Jeroncic, K., Xiong, Y., et al. (2008). The human cerebrospinal fluid metabolome. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 871, 164–173.CrossRefPubMedGoogle Scholar
  53. Xia, J., Psychogios, N., Young, N. & Wishart, D. S. (2009). MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37(Web Server issue), W652–W660.Google Scholar
  54. Yu, P., Xin, H., Lu, L., Fan, H., Kazachkov, M., Jiang, Z. J., et al. (2006). Involvement of semicarbazide-sensitive amine oxidase-mediated deamination in lipopolysaccharide-induced pulmonary inflammation. American Journal of Pathology, 168, 718–726.CrossRefPubMedGoogle Scholar
  55. Zebeli, Q., & Ametaj, B. N. (2009). Relationships between rumen lipopolysaccharide and mediators of inflammatory response with milk fat production and efficiency in dairy cows. Journal of Dairy Science, 92, 3800–3809.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Burim N. Ametaj
    • 1
  • Qendrim Zebeli
    • 1
  • Fozia Saleem
    • 2
  • Nikolaos Psychogios
    • 2
  • Michael J. Lewis
    • 2
  • Suzanna M. Dunn
    • 1
  • Jianguo Xia
    • 2
  • David S. Wishart
    • 2
  1. 1.Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonCanada
  2. 2.Departments of Biological Sciences and Computing ScienceUniversity of AlbertaEdmontonCanada

Personalised recommendations