Advertisement

Metabolomics

, Volume 6, Issue 4, pp 497–510 | Cite as

Targeted metabolomics in an intrusive weed, Rumex obtusifolius L., grown under different environmental conditions reveals alterations of organ related metabolite pathway

  • Atsuko Miyagi
  • Kentaro Takahara
  • Hideyuki Takahashi
  • Maki Kawai-Yamada
  • Hirofumi UchimiyaEmail author
Original Article

Abstract

This study was intended to analyze the metabolic pathway of Rumex obtusifolius L. (Broad-leaved dock), destructive weeds worldwide, in relation to major environmental factors (light and temperature). It was found that R. obtusifolius can be classified as plants in accumulating major organic acids such as oxalate in leaves and citrate in stems (Miyagi et al., Metabolomics 6:146–155 2010). The organ specific accumulation of certain metabolites was dissected by metabolomics approach in relation to metabolic pathway. Light or dark experiments showed that in the case of the oxalate accumulation, the major or the most dominated pathway was found to be the citrate-isocitrate-oxalate shunt. Furthermore, under the dark and/or low temperature (5°C) leaves showed sustainable growth with normal accumulation of TCA metabolites. Unlike leaves, there was a different pattern of metabolite accumulation in stems. Other metabolites such as amino acids also showed the organ specific alterations under the different ambient environments.

Keywords

Rumex obtusifolius New leaves Stems Oxalate Citrate Organ specific metabolites Capillary electrophoresis mass spectrometry Principal component analysis Hierarchical clustering analysis 

Notes

Acknowledgements

This research was supported by a grant from the Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry (BRAIN) and the CREST, JST, Japan.

Supplementary material

11306_2010_220_MOESM1_ESM.pdf (24 kb)
Supplementary data Relationship between citrate and organic acids or amino acids in stems of R. obtusifolius grown under either light or dark. Data were taken from Fig. 6. W; week(s). *; P < 0.05, **; P < 0.01. (PDF 25 kb)

References

  1. Calegario, F. F., Cosso, R. G., Fagian, M. M., Almeida, V., Jardim, W. F., Ježek, P., et al. (2003). Stimulation of potato tuber respiration by cold stress is associated with an increased capacity of both plant uncoupling mitochondrial protein (PUMP) and alternative oxidase. Journal of Bioenergetics and Biomembranes, 35, 211–220.CrossRefPubMedGoogle Scholar
  2. Cavers, P. B., & Harper, J. L. (1964). Rumex obtusifolius L. and R. crispus L. Journal of Ecology, 52, 737–766.CrossRefGoogle Scholar
  3. Cox, M. C. H., Benschop, J. J., Vreeburg, R. A. M., Wagemaker, C. A. M., Moritz, T., Peeters, A. J. M., et al. (2004). The roles of ethylene, auxin, abscisic acid, and gibberellin in the hyponastic growth of submerged Rumex palustris petioles. Plant Physiology, 136, 2948–2960.CrossRefPubMedGoogle Scholar
  4. Foyer, C. H., Vanacker, H., Gomez, L. D., & Harbinson, J. (2002). Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures: Review. Plant Physiology and Biochemistry, 40, 659–668.CrossRefGoogle Scholar
  5. Franceschi, V. R., & Nakata, P. A. (2005). Calcium oxalate in plants: Formation and function. Annual Review of Plant Biology, 56, 41–71.CrossRefPubMedGoogle Scholar
  6. Guy, C., Kaplan, F., Kopka, J., Selbig, J., & Hincha, D. K. (2008). Metabolomics of temperature stress. Physiologia Plantarum, 132, 220–235.PubMedGoogle Scholar
  7. Holm, L. G., Plucknett, D. L., Pancho, J. V., & Herberger, J. P. (1977). Rumex crispus and Rumex obtusifolius. In L. G. Holm (Ed.), The world’s worst weeds: Distribution and biology (pp. 401–408). Honolulu: University Press of Hawaii.Google Scholar
  8. Hongo, A. (1986). Infestation of Rumex obtusifolius L., distribution pattern of its individual plants in sown grasslands in eastern Hokkaido. Weed Research, Japan, 31, 300–315.Google Scholar
  9. Hongo, A. (1989). Survival and growth of seedling of Rumex obtusifolius L. & Rumex crispus L. in newly sown grassland. Weed Research, 29, 7–12.CrossRefGoogle Scholar
  10. Horie, H., & Nemoto, M. (1990). Comparison of the growth response to phosphorus and aluminum concentrations in four Rumex species. Weed Research, Japan, 35, 340–345.Google Scholar
  11. Kaplan, F., Kopka, J., Haskell, D. W., Zhao, W., Cameron Schiller, K., Gatzke, N., et al. (2004). Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiology, 136, 4159–4168.CrossRefPubMedGoogle Scholar
  12. Ke, W., Xiong, Z. T., Chen, S., & Chen, J. (2007). Effect of copper and mineral nutrition on growth, copper accumulation and mineral element uptake in two Rumex japonicus populations from a copper mine and an uncontaminated field sites. Environmental and Experimental Botany, 59, 59–67.CrossRefGoogle Scholar
  13. Löve, A., & Kapoor, B. M. (1967). A chromosome atlas of the collective genus Rumex. Cytologia, 32, 328–342.Google Scholar
  14. Makuchi, T., & Sakai, H. (1984). Seedling survival and flowering of Rumex obtusifolius L. in various habitats. Weed Research, Japan, 29, 123–130.Google Scholar
  15. Mclaren, J. S., & Smith, H. (1978). Phytochrome control of the growth and development of Rumex obtusifolius under simulated canopy light environments. Plant, Cell, and Environment, 1, 61–67.CrossRefGoogle Scholar
  16. Miyagi, A., Takahashi, H., Takahara, K., Hirabayashi, T., Nishimura, Y., Tezuka, T., et al. (2010). Principal component and hierarchical clustering analysis of metabolites in destructive weeds; polygonaceous plants. Metabolomics, 6, 146–155.CrossRefGoogle Scholar
  17. Pino, J., Haggar, R. J., Sans, F. X., Masalles, R. M., Hamilton, R. N. S., & Sackville-Hamilton, R. N. (1995). Clonal growth and fragment regeneration of Rumex obtusifolius L. Weed Research, Japan, 35, 141–148.CrossRefGoogle Scholar
  18. Proietti, S., Moscatello, S., Famiani, F., & Battistelli, A. (2009). Increase of ascorbic acid content and nutritional quality in spinach leaves during physiological acclimation to low temperature. Plant Physiology and Biochemistry, 47, 717–723.CrossRefPubMedGoogle Scholar
  19. Sanchez, D. H., Siahpoosh, M. R., Roessner, U., Udvardi, M., & Kopka, J. (2008). Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiologia Plantarum, 132, 209–219.PubMedGoogle Scholar
  20. Shulaev, V., Cortes, D., Miller, G., & Mittler, R. (2008). Metabolomics for plant stress response. Physiologia Plantarum, 132, 199–208.CrossRefPubMedGoogle Scholar
  21. Takahashi, H., Hayashi, M., Goto, F., Sato, S., Soga, T., Nishioka, T., et al. (2006a). Evaluation of metabolic alteration in transgenic rice overexpressing dihydrofavonol-4-reductase. Annals of Botany, 98, 819–825.CrossRefPubMedGoogle Scholar
  22. Takahashi, H., Watanabe, A., Tanaka, A., Hashida, S., Kawai-Yamada, M., Sonoike, K., et al. (2006b). Chloroplast NAD kinase is essential for energy transduction though the xanthophylls cycle in photosynthesis. Plant and Cell Physiology, 47, 1678–1682.CrossRefPubMedGoogle Scholar
  23. Tolrà, R. P., Poschenrieder, C., Luppi, B., & Barceló, J. (2005). Aluminium-induced changes in the profiles of both organic acids and phenolic substances underlie Al tolerance in Rumex acetosa L. Environmental and Experimental Botany, 54, 231–238.CrossRefGoogle Scholar
  24. Toole, E. H., & Brown, E. (1946). Final results of the Duvel buried seed experiment. Journal of Agricultural Research, 72, 201–206.Google Scholar
  25. Totterdell, S., & Roberts, E. H. (1979). Effects of low temperature on the loss of innate dormancy and the development of induced dormancy in seeds of Rumex obtusifolius L. and Rumex crispus L. Plant, Cell and Environment, 2, 131–137.CrossRefGoogle Scholar
  26. Urbanczyk-Wochniak, E., Baxter, C., Kolbe, A., Kopka, J., Sweetlove, L. J., & Fernie, A. R. (2005). Profiling of diurnal patterns of metabolite and transcript abundance in potato (Solanum tuberosum) leaves. Planta, 221, 891–903.CrossRefPubMedGoogle Scholar
  27. Van Assche, J. A., & Vanlerberghe, K. A. (1989). The role of temperature on the dormancy cycle of seeds of Rumex obtusifolius L. Functional Ecology, 3, 107–115.CrossRefGoogle Scholar
  28. Voesenek, L. A. C. J., Colmer, T. D., Pierik, R., Millenaar, F. F., & Peeters, A. J. M. (2006). How plants cope with complete submergence. New Phytologist, 170, 213–226.CrossRefPubMedGoogle Scholar
  29. Yang, M. T., Chen, S. L., Lin, C. Y., & Chen, Y. M. (2005). Chilling stress suppresses chloroplast development and nuclear gene expression in leaves of mung bean seedlings. Planta, 221, 374–385.CrossRefPubMedGoogle Scholar
  30. Yin, G., Sun, H., Xin, X., Qin, G., Liang, Z., & Jing, X. (2009). Mitochondrial damage in the soybean seed axis during imbibition at chilling temperatures. Plant Cell Physiology, 50, 1305–1318.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Atsuko Miyagi
    • 1
    • 2
  • Kentaro Takahara
    • 2
  • Hideyuki Takahashi
    • 3
  • Maki Kawai-Yamada
    • 1
    • 4
    • 5
  • Hirofumi Uchimiya
    • 1
    • 2
    • 3
    Email author
  1. 1.Institute for Environmental Science and TechnologySaitama UniversitySaitama CityJapan
  2. 2.Institute of Molecular and Cellular BiosciencesThe University of TokyoTokyoJapan
  3. 3.Iwate Biotechnology Research CenterIwateJapan
  4. 4.Graduate School of Science and EngineeringSaitama UniversitySaitama CityJapan
  5. 5.Core Research for Evolutional Science and Technology (CREST)Japan Science and Technology Agency (JST)SaitamaJapan

Personalised recommendations