Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Stable isotope-resolved metabolomic analysis of lithium effects on glial-neuronal metabolism and interactions


Despite the long-established therapeutic efficacy of lithium in the treatment of bipolar disorder (BPD), its molecular mechanism of action remains elusive. Newly developed stable isotope-resolved metabolomics (SIRM) is a powerful approach that can be used to elucidate systematically how lithium impacts glial and neuronal metabolic pathways and activities, leading ultimately to deciphering its molecular mechanism of action. The effect of lithium on the metabolism of three different 13C-labeled precursors ([U-13C]-glucose, 13C-3-lactate or 13C-2,3-alanine) was analyzed in cultured rat astrocytes and neurons by nuclear magnetic resonance (NMR) spectroscopy and gas chromatography mass spectrometry (GC-MS). Using [U-13C]-glucose, lithium was shown to enhance glycolytic activity and part of the Krebs cycle activity in both astrocytes and neurons, particularly the anaplerotic pyruvate carboxylation (PC). The PC pathway was previously thought to be active in astrocytes but absent in neurons. Lithium also stimulated the extracellular release of 13C labeled-lactate, -alanine (Ala), -citrate, and -glutamine (Gln) by astrocytes. Interrogation of neuronal pathways using 13C-3-lactate or 13C-2,3-Ala as tracers indicated a high capacity of neurons to utilize lactate and Ala in the Krebs cycle, particularly in the production of labeled Asp and Glu via PC and normal cycle activity. Prolonged lithium treatment enhanced lactate metabolism via PC but inhibited lactate oxidation via the normal Krebs cycle in neurons. Such lithium modulation of glycolytic, PC and Krebs cycle activity in astrocytes and neurons as well as release of fuel substrates by astrocytes should help replenish Krebs cycle substrates for Glu synthesis while meeting neuronal demands for energy. Further investigations into the molecular regulation of these metabolic traits should provide new insights into the pathophysiology of mood disorders and early diagnostic markers, as well as new target(s) for effective therapies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8



Bipolar disorder


Pentose phosphate pathway


Stable isotope resolved metabolomics


Total correlation spectroscopy


Heteronuclear single quantum coherence spectroscopy


Uniformly 13C labeled glucose


  1. Basselin, M., Chang, L., & Rapoport, S. I. (2006). Chronic lithium chloride administration to rats elevates glucose metabolism in wide areas of brain, while potentiating negative effects on metabolism of dopamine D2-like receptor stimulation. Psychopharmacology (Berlin), 187, 303–311.

  2. Berggren, U. (1985). The effect of acute lithium administration on brain monoamine synthesis and the precursor amino acids tyrosine and tryptophan in brain and plasma in rats. Journal of Neural Transmission, 61, 175–181.

  3. Birch, N. J., & Hughes, M. S. (1989). Lithium and magnesium-dependent processes in glucose metabolism. Physiologie, 26, 25–29.

  4. Bittar, P. G., Charnay, Y., Pellerin, L., Bouras, C., & Magistretti, P. J. (1996). Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. Journal of Cerebral Blood Flow and Metabolism, 16, 1079–1089.

  5. Bonvento, G., Herard, A. S., & Voutsinos-Porche, B. (2005). The astrocyte-neuron lactate shuttle: a debated but still valuable hypothesis for brain imaging. Journal of Cerebral Blood Flow and Metabolism, 25, 1394–1399.

  6. Bouzier-Sore, A. K., Serres, S., Canioni, P., & Merle, M. (2003). Lactate involvement in neuron-glia metabolic interaction: C-13-NMR spectroscopy contribution. Biochimie, 85, 841–848.

  7. Bouzier-Sore, A. K., Voisin, P., Bouchaud, V., Bezancon, E., Franconi, J. M., & Pellerin, L. (2006). Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study. European Journal of Neuroscience, 24, 1687–1694.

  8. Chen, G., Masana, M. I., & Manji, H. K. (2000). Lithium regulates PKC-mediated intracellular cross-talk and gene expression in the CNS in vivo. Bipolar Disorder, 2, 217–236.

  9. Chen, X., McMahon, E. G., & Gulve, E. A. (1998). Stimulatory effect of lithium on glucose transport in rat adipocytes is not mediated by elevation of IP1. American Journal of Physiology, 275, E272–E277.

  10. Chen, R. W., Qin, Z. H., Ren, M., Kanai, H., Chalecka-Franaszek, E., Leeds, P., et al. (2003). Regulation of c-Jun N-terminal kinase, p38 kinase and AP-1 DNA binding in cultured brain neurons: roles in glutamate excitotoxicity and lithium neuroprotection. Journal of Neurochemistry, 84, 566–575.

  11. Engel, S. R., Creson, T. K., Hao, Y., Shen, Y., Maeng, S., Nekrasova, T., et al. (2009). The extracellular signal-regulated kinase pathway contributes to the control of behavioral excitement. Molecular Psychiatry, 14, 448–461.

  12. Fan, T. W.-M. (1996). Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Progress in Nuclear Magnetic Resonance Spectroscopy, 28, 161–219.

  13. Fan, T. W.-M., Bandura, L., Higashi, R., & Lane, A. (2005). Metabolomics-edited transcriptomics analysis of Se anticancer action in human lung cancer cells. Metabolomics Journal, 1, 325–339.

  14. Fan, T. W.-M., Colmer, T. D., Lane, A. N., & Higashi, R. M. (1993). Determination of metabolites by H-1-NMR and GC––analysis for organic osmolytes in crude tissue-extracts. Analytical Biochemistry, 214, 260–271.

  15. Fan, T. W.-M., Higashi, R. M., & Lane, A. N. (2006). Integrating metabolomics and transcriptomics for probing Se anticancer mechanisms. Drug Metabolism Reviews, 38, 707–732.

  16. Fan, T. W.-M., Higashi, R. M., Lane, A. N., & Jardetzky, O. (1986). Combined use of H-1-NMR and Gc-Ms for metabolite monitoring and invivo H-1-NMR assignments. Biochimica et Biophysica Acta, 882, 154–167.

  17. Fan, T. W.-M., Kucia, M., Jankowski, K., Higashi, R., Ratajczak, J., Ratajczak, M., et al. (2008). Rhabdomyosarcoma cells show an energy producing anabolic metabolic phenotype compared with primary myocytes. Molecular Cancer, 7, 79.

  18. Fan, T. W.-M., & Lane, A. N. (2008). Structure-based profiling of metabolites and isotopomers by NMR. Progress in NMR Spectroscopy, 52, 69–117.

  19. Fan, T. W.-M., Lane, A. N., Higashi, R. M., Farag, M. A., Gao, H., Bousamra, M., et al. (2009). Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Molecular Cancer, 8, 41.

  20. Gould, T. D., & Manji, H. K. (2002). Signaling networks in the pathophysiology and treatment of mood disorders. Journal of Psychosomatic Research, 53, 687–697.

  21. Haberg, A., Qu, H., Haraldseth, O., Unsgard, G., & Sonnewald, U. (1998). In vivo injection of [1–13C]glucose and [1, 2–13C]acetate combined with ex vivo 13C nuclear magnetic resonance spectroscopy: a novel approach to the study of middle cerebral artery occlusion in the rat. Journal of Cerebral Blood Flow and Metabolism, 18, 1223–1232.

  22. Hao, Y. L., Creson, T., Zhang, L., Li, P. P., Du, F., Yuan, P. X., et al. (2004). Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. Journal of Neuroscience, 24, 6590–6599.

  23. Hedgepeth, C. M., Conrad, L. J., Zhang, J., Huang, H. C., Lee, V. M., & Klein, P. S. (1997). Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Developmental Biology, 185, 82–91.

  24. Hertz, L., Peng, L., & Dienel, G. A. (2007). Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. Journal of Cerebral Blood Flow and Metabolism, 27, 219–249.

  25. Hirst, J., Sucheta, A., Ackrell, B. A. C., & Armstrong, F. A. (1996). Electrocatalytic voltammetry of succinate dehydrogenase: direct quantification of the catalytic properties of a complex electron-transport enzyme. Journal of the American Chemical Society, 118, 5031–5038.

  26. Hoshi, M., Takashima, A., Noguchi, K., Murayama, M., Sato, M., Kondo, S., et al. (1996). Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3beta in brain. Proceedings of the National Academy of Sciences of the United States of America, 93, 2719–2723.

  27. Hunsberger, J.G., Austin, D.R., Chen, G. and Manji, H.K. (2009) Cellular mechanisms underlying affective resiliency: the role of glucocorticoid receptor- and mitochondrially-mediated plasticity. Brain Res.

  28. Hyder, F., Patel, A. B., Gjedde, A., Rothman, D. L., Behar, K. L., & Shulman, R. G. (2006). Neuronal-glial glucose oxidation and glutamatergic––GABAergic function. Journal of Cerebral Blood Flow and Metabolism, 26, 865–877.

  29. Jensen, H. V., Aggernæs, H., Plenge, P., Mellerup, E. T., Stensgaard, A., Thomsen, C., et al. (1996). Twelve-hour brain lithium concentration in lithium maintenance treatment of manic-depressive disorder: daily versus alternate-day dosing schedule. Psychopharmacology, 124, 275–278.

  30. Jitrapakdee, S., St Maurice, M., Rayment, I., Cleland, W. W., Wallace, J. C., & Attwood, P. V. (2008). Structure, mechanism and regulation of pyruvate carboxylase. Biochemical Journal, 413, 369–387.

  31. Kaddurah-Daouk, R. (2009). Metabolomics: a global biochemical approach to the study of neuropsychiatric disorders. Biological Psychiatry, 65, 259.

  32. Kaddurah-Daouk, R., Kristal, B. S., & Weinshilboum, R. M. (2008). Metabolomics: a global biochemical approach to drug response and disease. Annual Review of Pharmacology and Toxicology, 48, 653–683.

  33. Kaddurah-Daouk, R., McEvoy, J., Baillie, R. A., Lee, D., Yao, J. K., Doraiswamy, P. M., et al. (2007). Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Molecular Psychiatry, 12, 934–945.

  34. Kohno, T., Shiga, T., Toyomaki, A., Kusumi, I., Matsuyama, T., Inoue, T., et al. (2007). Effects of lithium on brain glucose metabolism in healthy men. Journal of Clinical Psychopharmacology, 27, 698–702.

  35. Kristal, B. S., Kaddurah-Daouk, R., Beal, M. F., & Matson, W. R. (2007). Metabolomics: concept and potential neuroscience application. In: Handbook of neurochemistry and molecular neurobiology: brain energetics. Integration of molecular and cellular processes (pp. 889–912). New York: Springer.

  36. Lane, A. N., & Fan, T. W.-M. (2007). Quantification and identification of isotopomer distributions of metabolites in crude cell extracts using 1H TOCSY. Metabolomics, 3, 79–86.

  37. Lane, A. N., Fan, T. W.-M., & Higashi, R. M. (2008). Isotopomer-based metabolomic analysis by NMR and mass spectrometry. Methods in Cell Biology, 84, 541–588.

  38. Lane, A. N., Fan, T. W.-M., Xie, X., Moseley, H. N., & Higashi, R. M. (2009). Stable isotope analysis of lipid biosynthesis by high resolution mass spectrometry and NMR. Analytica Chimica Acta, 651, 201–208.

  39. Lindon, J. C., Holmes, E., & Nicholson, J. K. (2007). Metabonomics in pharmaceutical R&D. FEBS Journal, 274, 1149–1151.

  40. Magistretti, P. J. (2009). Role of glutamate in neuron-glia metabolic coupling. American Journal of Clinical Nutrition, 90, 875S–880S.

  41. Manji, H. K., Moore, G. J., & Chen, G. (1999). Lithium at 50: have the neuroprotective effects of this unique cation been overlooked? Biological Psychiatry, 46, 929–940.

  42. Manji, H. K., Moore, G. J., Rajkowska, G., & Chen, G. (2000). Neuroplasticity and cellular resilience in mood disorders. Molecular Psychiatry, 5, 578–593.

  43. Manji, H. K., Potter, W. Z., & Lenox, R. H. (1995). Signal transduction pathways. Molecular targets for lithium’s actions. Archives of General Psychiatry, 52, 531–543.

  44. Marcus, S. R., Nadiger, H. A., Chandrakala, M. V., Rao, T. I., & Sadasivudu, B. (1986). Acute and short-term effects of lithium on glutamate metabolism in rat brain. Biochemical Pharmacology, 35, 365–369.

  45. Mason, G. F., Petersen, K. F., de Graaf, R. A., Shulman, G. I., & Rothman, D. L. (2007). Measurements of the anaplerotic rate in the human cerebral cortex using C-13 magnetic resonance spectroscopy and [1-C-13] and [2-C-13] glucose. Journal of Neurochemistry, 100, 73–86.

  46. Nordenberg, J., Kaplansky, M., Beery, E., Klein, S., & Beitner, R. (1982). Effects of lithium on the activities of phosphofructokinase and phosphoglucomutase and on glucose-1, 6-diphosphate levels in rat muscles, brain and liver. Biochemical Pharmacology, 31, 1025–1031.

  47. O’Donnell, T., Rotzinger, S., Ulrich, M., Hanstock, C. C., Nakashima, T. T., & Silverstone, P. H. (2003). Effects of chronic lithium and sodium valproate on concentrations of brain amino acids. European Neuropsychopharmacology, 13, 220–227.

  48. Paige, L. A., Mitchell, M. W., Krishnan, K. R. R., Kaddurah-Daouk, R., & Steffens, D. C. (2007). A preliminary metabolomic analysis of older adults with and without depression. International Journal of Geriatric Psychiatry, 22, 418–423.

  49. Patel, A. B., de Graaf, R. A., Mason, G. F., Kanamatsu, T., Rothman, D. L., Shulman, R. G., et al. (2004). Glutamatergic neurotransmission and neuronal glucose oxidation are coupled during intense neuronal activation. Journal of Cerebral Blood Flow and Metabolism, 24, 972–985.

  50. Pellerin, L., Bouzier-Sore, A. K., Aubert, A., Serres, S., Merle, M., Costalat, R., et al. (2007). Activity-dependent regulation of energy metabolism by astrocytes: An update. Glia, 55, 1251–1262.

  51. Plenge, P. (1976). Acute lithium effects on rat brain glucose metabolism––in vivo. International Pharmacopsychiatry, 11, 84–92.

  52. Plenge, P. (1982). Lithium effects on rat brain glucose metabolism in vivo. Effects after administration of lithium by various routes. Psychopharmacology (Berl), 77, 348–355.

  53. Rozen, S., Cudkowicz, M. E., Bogdanov, M., Matson, W. R., Kristal, B. S., Beecher, C., et al. (2005). Metabolomic analysis and signatures in motor neuron disease. Metabolomics, 1, 101–108.

  54. Schloesser, R. J., Huang, J., Klein, P. S., & Manji, H. K. (2008). Cellular plasticity cascades in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology, 33, 110–133.

  55. Serres, S., Raffard, G., Franconi, J. M., & Merle, M. (2008). Close coupling between astrocytic and neuronal metabolisms to fulfill anaplerotic and energy needs in the rat brain. Journal of Cerebral Blood Flow and Metabolism, 28, 712–724.

  56. Xu, S., & Shen, J. (2006). In vivo dynamic turnover of cerebral C-13 isotopomers from [U-(13) C]glucose. Journal of Magnetic Resonance, 182, 221–228.

  57. Zhang, L., Li, B. S., Zhao, W. Q., Chang, Y. H., Ma, W., Dragan, M., et al. (2002). Sex-related differences in MAPKs activation in rat astrocytes: effects of estrogen on cell death. Molecular Brain Research, 103, 1–11.

  58. Zwingmann, C., & Leibfritz, D. (2003). Regulation of glial metabolism studied by C-13-NMR. NMR in Biomedicine, 16, 370–399.

  59. Zwingmann, C., Richter-Landsberg, C., & Leibfritz, D. (2001). C-13 isotopomer analysis of glucose and alanine metabolism reveals cytosolic pyruvate compartmentation as part of energy metabolism in astrocytes. Glia, 34, 200–212.

Download references


NMR spectra were recorded at the JG Brown Cancer Center NMR facility, and mass spectra were obtained from the Center for Regulatory and Environmental Analytical Metabolomics (CREAM) facility at the University of Louisville. Ioline Henter of NIMH provided invaluable editorial assistance. Financial support: The study was supported in part by NIH Grant Numbers P20RR018733 from the National Center for Research Resources, 1R01CA118434-01A2 (TF, ANL, RMH), 3R01CA118434-02S1 (TF, RMH), and R24GM078233 (RKD, TF) and National Science Foundation EPSCoR grant # EPS-0447479 (TF, ANL).

Author information

Correspondence to Teresa W.-M. Fan or Rima Kaddurah-Daouk.

Additional information

T. W.-M. Fan and P. Yuan contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2.47 MB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fan, T.W., Yuan, P., Lane, A.N. et al. Stable isotope-resolved metabolomic analysis of lithium effects on glial-neuronal metabolism and interactions. Metabolomics 6, 165–179 (2010).

Download citation


  • Bipolar disorder
  • Lithium
  • 13C-labeled tracers
  • Astrocytes
  • Neurons
  • Pyruvate carboxylation
  • Glu/Gln cycling