, Volume 6, Issue 1, pp 146–155 | Cite as

Principal component and hierarchical clustering analysis of metabolites in destructive weeds; polygonaceous plants

  • Atsuko Miyagi
  • Hideyuki Takahashi
  • Kentaro Takahara
  • Takayuki Hirabayashi
  • Yoshiki Nishimura
  • Takafumi Tezuka
  • Maki Kawai-Yamada
  • Hirofumi UchimiyaEmail author
Original Article


Comprehensive analysis of metabolites using capillary electrophoresis–mass spectrometry was carried out in harmful weeds belonging to Polygonaceae. A principal component analysis revealed clear distinctions among eight Rumex species and Fallopia japonica. Hierarchical clustering data showed that respective metabolites can be grouped due to species differences. There was a positive relationship between oxalate and citrate, oxalate and ascorbate, and oxalate and glutamine. The amount of oxalate per leaf fresh weight was not affected by increased concentrations of exogenously supplied nutrients from Hoagland’s formulation in one of the most destructive weeds R. obtusifolius. The oxalate accumulation in this plant is independent of external nutrient level, where nutrient-rich environments apparently stimulate internal constituents such as amino acids and other metabolites.


Polygonaceae Rumex Metabolite profile Capillary electrophoresis–mass spectrometry Oxalate Principal component analysis Hierarchical clustering analysis 



We thank to Dr. Masaki Tateno, Dr. Satoshi Kobayashi, Dr. Mitsunori Hayashi, Dr. Takuji Nakamura and Dr. Jun Ishii for providing materials and helpful advice. This research was supported by a grant from the MEXT, Japan, CREST, JST, Japan, and the Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry (BRAIN).

Supplementary material

11306_2009_186_MOESM1_ESM.doc (143 kb)
Supplementary material 1 (DOC 143 kb)
11306_2009_186_MOESM2_ESM.doc (156 kb)
Supplementary material 2 (DOC 155 kb)


  1. Beerling, D. J., Bailey, J. P., & Conolly, A. P. (1994). Fallopia japonica (Houtt.) Ronse Decraene (Reynoutria japonica Houtt.; Polygonum cuspidatum Sieb. & Zucc.). Journal of Ecology, 82, 959–979.CrossRefGoogle Scholar
  2. Davoine, C., Le Deunff, E., Ledger, N., Avice, J. C., Billard, J. P., Dumas, B., et al. (2001). Specific and constitutive expression of oxalate oxidase during the ageing of leaf sheaths of ryegrass stubble. Plant, Cell and Environment, 24, 1033–1043.CrossRefGoogle Scholar
  3. Dickie, C. W., Hamann, M. H., Carroll, W. D., & Chow, F. (1978). Oxalate (Rumex venosus) poisoning in cattle. Journal of the American Veterinary Medical Association, 173, 73–74.PubMedGoogle Scholar
  4. Foyer, C. H., Parry, M., & Noctor, G. (2003). Markers and signals associated with nitrogen assimilation in higher plants. Journal of Experimental Botany, 54, 585–593.CrossRefPubMedGoogle Scholar
  5. Frye, A. S. L., & Kron, K. A. (2003). rbcL phylogeny and character evolution in Polygonaceae. Systematic Botany, 28, 326–332.Google Scholar
  6. Hashida, S. N., Takahashi, H., Kawai-Yamada, M., & Uchimiya, H. (2007). Arabidopsis thaliana nicotinate/nicotinamide mononucleotide adenyltrasferase (AtNMNAT) is required for pollen tube growth. Plant Journal, 49, 694–703.CrossRefPubMedGoogle Scholar
  7. Holm, L. G., Plucknett, D. L., Pancho, J. V., & Herberger, J. P. (1977). Rumex crispus and Rumex obtusifolius. In L. G. Holm (Ed.), The world’s worst weeds: Distribution and biology (pp. 401–408). Honolulu: University Press of Hawaii.Google Scholar
  8. Le Deunff, E., Davoine, C., Le Dantec, C., Billard, J. P., & Huault, C. (2004). Oxidative burst and expression of germin/oxo genes during wounding of ryegrass leaf blades: Comparison with senescence of leaf sheaths. Plant Journal, 38, 421–431.CrossRefPubMedGoogle Scholar
  9. Nashiki, M., Sawada, H., Harashima, N., & Sato, K. (1988). Studies on weed management in pastures. III. Decrease in the population density of orchardgrass in a sward infested with broadleaf-dock. Weed Research, Japan, 33, 253–259.Google Scholar
  10. Noctor, G., & Foyer, C. H. (1998). Ascorbate and Glutathione: Keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 249–279.CrossRefPubMedGoogle Scholar
  11. Novitskaya, L., Trevanion, S., Driscoll, S. D., Foyer, C. H., & Noctor, G. (2002). How does photorespiration modulate leaf amino acid contents? A dual approach through modeling and metabolite analysis. Plant, Cell and Environment, 25, 821–836.CrossRefGoogle Scholar
  12. Okazaki, K., Oka, N., Shinano, T., Osaki, M., & Takebe, M. (2008). Differences in the metabolite profiles of spinach (Spinacia oleracea L.) leaf in different concentrations of nitrate in the culture solution. Plant and Cell Physiology, 49, 170–177.CrossRefPubMedGoogle Scholar
  13. Panciera, R. J., Martin, T., Burrows, G. E., Taylor, D. S., & Rice, L. E. (1990). Acute oxalate poisoning attributable to ingestion of curly dock (Rumex crispus) in sheep. Journal of the American Veterinary Medical Association, 196, 1981–1984.PubMedGoogle Scholar
  14. Reig, R., Sanz, P., Blanche, C., Fontarnau, R., Dominguez, A., & Corbella, J. (1990). Fatal poisoning by Rumex crispus (curled dock): Pathological findings and application of scanning electron microscopy. Veterinary and Human Toxicology, 32, 468–470.PubMedGoogle Scholar
  15. Sato, S., Soga, T., Nishioka, T., & Tomita, M. (2004). Simultaneous determination of the main metabolites in rice leaves using capillary electrophoresis mass spectrometry and capillary electrophoresis diode array detection. Plant Journal, 40, 151–163.CrossRefPubMedGoogle Scholar
  16. Siener, R., Hönow, R., Seidler, A., Voss, S., & Hesse, A. (2006). Oxalate contents of species of the Polygonaceae, Amaranthaceae and Chenopodiaceae families. Food Chemistry, 98, 220–224.CrossRefGoogle Scholar
  17. Spoerke, D. G., & Smolinke, S. C. (1990). Oxalates. In D. G. Spoerke & S. C. Smolinke (Eds.), Toxicity of houseplants (pp. 29–32). Florida: CRC press.Google Scholar
  18. Takahashi, H., Hayashi, M., Goto, F., Sato, S., Soga, T., Nishioka, T., et al. (2006a). Evaluation of metabolic alteration in transgenic rice overexpressing dihydrofavonol-4-reductase. Annals of Botany, 98, 819–825.CrossRefPubMedGoogle Scholar
  19. Takahashi, H., Watanabe, A., Tanaka, A., Hashida, S., Kawai-Yamada, M., Sonoike, K., et al. (2006b). Chloroplast NAD kinase is essential for energy transduction though the xanthophylls cycle in photosynthesis. Plant and Cell Physiology, 47, 1678–1682.CrossRefPubMedGoogle Scholar
  20. Tian, H., Jiang, L., Liu, E., Zhang, J., Liu, F., & Peng, X. (2008). Dependence of nitrate-induced oxalate accumulation on nitrate reduction in rice leaves. Physiologia Plantarum, 133, 180–189.CrossRefPubMedGoogle Scholar
  21. Zaller, J. G. (2006). Sheep grazing vs cutting: Regeneration and soil nutrient exploitation of the grassland weed Rumex obtusifolius. BioControl, 51, 837–850.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Atsuko Miyagi
    • 1
  • Hideyuki Takahashi
    • 2
  • Kentaro Takahara
    • 1
  • Takayuki Hirabayashi
    • 1
  • Yoshiki Nishimura
    • 1
    • 3
  • Takafumi Tezuka
    • 1
    • 4
  • Maki Kawai-Yamada
    • 1
    • 5
    • 6
  • Hirofumi Uchimiya
    • 1
    • 2
    Email author
  1. 1.Institute of Molecular and Cellular BiosciencesThe University of TokyoTokyoJapan
  2. 2.Iwate Biotechnology Research CenterKitakamiJapan
  3. 3.Graduate School of ScienceKyoto UniversityKyotoJapan
  4. 4.School of Health and Human LifeNagoya Bunri UniversityInazawaJapan
  5. 5.Department of Environmental Science and Human EngineeringSaitama UniversitySaitamaJapan
  6. 6.Core Research for Evolutional Science and Technology (CREST)Japan Science and Technology Agency (JST)KawaguchiJapan

Personalised recommendations