, 5:459 | Cite as

Metabolite profiling of maize grain: differentiation due to genetics and environment

  • Richard M. Röhlig
  • Joachim Eder
  • Karl-Heinz EngelEmail author
Original Article


A comparative metabolite profiling approach based on gas chromatography-mass spectrometry (GC/MS) was applied to investigate the impact of genetic background, growing location and season on the chemical composition of maize grain. The metabolite profiling protocol involved sub-fractionation of the metabolites and allowed the assessment of about 300 distinct analytes from different chemical classes (polar to lipophilic), of which 167 could be identified. A comparison, over three consecutive growing seasons, of the metabolite profiles of four maize cultivars which differed in their maturity classification, was carried out using principal component analysis (PCA). This revealed a strong separation of one cultivar in the first growing season, which could be explained by the immaturity of the kernels of this cultivar compared with others in the field trial. Further evaluations by pair-wise comparison using Student’s t-test and analysis of variance (ANOVA) showed that the growing season was the most prominent impact factor driving variation of the metabolite pool. An increased understanding of metabolic variation was achieved by analysis of a second sample set comprising one cultivar grown for 3 years at four locations. The applied GC/MS-based metabolite profiling demonstrated the natural variation in maize grain metabolite pools resulting from the interplay of environment, season, and genotype.


Metabolite profiling Maize Zea mays GC/MS 



This work was financially supported by the EU FP6 project SAFEFOODS (contract no. Food-CT-2004-506446, Promoting Food Safety through a New Integrated Risk Analysis Approach for Foods—SAFEFOODS). The technical assistance by Martina Denk is gratefully acknowledged.

Supplementary material

11306_2009_171_MOESM1_ESM.xls (26 kb)
Supplementary material 1 (XLS 26 kb)


  1. Arruda, P., da Silva, W. J., & Teixeira, J. P. F. (1978). Protein and free amino acids in a high lysine maize double mutant. Phytochemistry, 17, 1217–1218.CrossRefGoogle Scholar
  2. Ashton, W. D. (1972). The Logit Transformation with special reference to its uses in bioassay. London: Charles Griffin & Company Limited.Google Scholar
  3. Ausloos, P., Clifton, C. L., Lias, S. G., Mikaya, A. I., Stein, S. E., Tchekhovskoi, D. V., et al. (1999). The critical evaluation of a comprehensive mass spectral library. Journal of the American Society for Mass Spectrometry, 10, 287–299.CrossRefPubMedGoogle Scholar
  4. Bundessortenamt. (2008). Beschreibende Sortenliste - Getreide, Mais, Ölfrüchte, Leguminosen (großkörnig), Hackfrüchte 2008 (außer Kartoffeln). Hannover: Bundessortenamt.Google Scholar
  5. Castro, C., & Manetti, C. (2007). A multiway approach to analyze metabonomic data: a study of maize seeds development. Analytical Biochemistry, 371, 194–200.CrossRefPubMedGoogle Scholar
  6. Daftary, R. D., & Pomeranz, Y. (1965). Changes in lipid composition in maturing wheat. Journal of Food Science, 30, 577–582.CrossRefGoogle Scholar
  7. Duvick, D. N. (1952). Free amino acids in the developing endosperm of maize. American Journal of Botany, 39, 656–661.CrossRefGoogle Scholar
  8. FAO (2005) ProdSTAT: Crops, food and agriculture organization of the United Nations.Google Scholar
  9. Fernie, A. R., & Schauer, N. (2008). Metabolomics-assisted breeding: a viable option for crop improvement? Trends in Genetics, 25, 39–48.CrossRefPubMedGoogle Scholar
  10. Fiehn, O. (2001). Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comparative and Functional Genomics, 2, 155–168.CrossRefPubMedGoogle Scholar
  11. Fiehn, O. (2002). Metabolomics—the link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171.CrossRefPubMedGoogle Scholar
  12. Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157–1161.CrossRefPubMedGoogle Scholar
  13. Frank, T., Meuleye, B. S., Miller, A., Shu, Q.-Y., & Engel, K.-H. (2007). Metabolite profiling of two low phytic acid (lpa) rice mutants. Journal of Agricultural and Food Chemistry, 55, 11011–11019.CrossRefPubMedGoogle Scholar
  14. Frenzel, T., Miller, A., & Engel, K.-H. (2002). Metabolite profiling-a fractionation method for analysis of major and minor compounds in rice grains. Cereal Chemistry, 79, 215–221.CrossRefGoogle Scholar
  15. Frenzel, T., Miller, A., & Engel, K.-H. (2003). A methodology for automated comparative analysis of metabolite profiling data. European Food Research and Technology, 216, 335–342.Google Scholar
  16. Greiff, W. R., Morgan, W. T., & Ponte, J. M. (2002). The role of variance in term weighting for probabilistic information retrieval. Proceedings of the Eleventh International Conference on Information and Knowledge Management, ACM.Google Scholar
  17. Harrigan, G. G., Stork, L. G., Riordan, S. G., Reynolds, T. L., Ridley, W. P., Masucci, J. D., et al. (2007a). Impact of genetics and environment on nutritional and metabolite components of maize grain. Journal of Agricultural and Food Chemistry, 55, 6177–6185.CrossRefPubMedGoogle Scholar
  18. Harrigan, G. G., Stork, L. G., Riordan, S. G., Ridley, W. P., MacIsaac, S., Halls, S. C., et al. (2007b). Metabolite analyses of grain from maize hybrids grown in the United States under drought and watered conditions during the 2002 field season. Journal of Agricultural and Food Chemistry, 55, 6169–6176.CrossRefPubMedGoogle Scholar
  19. Hazebroek, J., Harp, T., Shi, J., & Wang, H. (2007). Metabolomic analysis of low phytic acid maize kernels. In B. J. Nikolau & E. S. Wurtele (Eds.), Concepts in plant metabolomics (pp. 221–237). Berlin, Germany: Springer.CrossRefGoogle Scholar
  20. Hirel, B., Andrieu, B., Valadier, M.-H., Renard, S., Quilleré, I., Chelle, M., et al. (2005). Physiology of maize II: Identification of physiological markers representative of the nitrogen status of maize (Zea mays) leaves during grain filling. Physiologia Plantarum, 124, 178–188.CrossRefGoogle Scholar
  21. IPS, Institut für Pflanzenschutz (2009). Agrarmeteorologisches Messnetz Bayern, Bayerische Landesanstalt für Landwirtschaft (LfL).Google Scholar
  22. Jackson, J. E. (1991). A user’s guide to principal components. New York: Wiley.CrossRefGoogle Scholar
  23. Kamal-Eldin, A., Appelqvist, L. Å., Yousif, G., & Iskander, G. M. (1992). Seed lipids of Sesamum indicum and related wild species in Sudan. The sterols. Journal of the Science of Food and Agriculture, 59, 327–334.CrossRefGoogle Scholar
  24. Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmuller, E., et al. (2005). GMD@CSB.DB: The Golm Metabolome Database. Bioinformatics, 21, 1635–1638.CrossRefPubMedGoogle Scholar
  25. Lozovaya, V., Ulanov, A., Lygin, A., Duncan, D., & Widholm, J. (2006). Biochemical features of maize tissues with different capacities to regenerate plants. Planta, 224, 1385–1399.CrossRefPubMedGoogle Scholar
  26. Meyna, S. (2005). Freie und triglycerid-gebundene Hydroxyfettsäuren in Gerste und Malz und ihre Bedeutung für die Geschmacksstabilität des Bieres, Fakultät III (Prozesswissenschaften), Technische Universität Berlin, pp. 126.Google Scholar
  27. Miller, L. T. (1982). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. Journal of Clinical Microbiology, 16, 584–586.PubMedGoogle Scholar
  28. Miyanishi, T., Tutimoto, S., Ogura, M., & Iio, T. (1991). Studies on the taste and flavor of sweet corn. I. Changes in chemical components in sweet corn (cv. Golden Earlipak) kernels during maturation. Nippon Shokuhin Kogyo Gakkaishi, 38, 758–764.Google Scholar
  29. Reynolds, T. L., Nemeth, M. A., Glenn, K. C., Ridley, W. P., & Astwood, J. D. (2005). Natural variability of metabolites in maize grain: Differences due to genetic background. Journal of Agricultural and Food Chemistry, 53, 10061–10067.CrossRefPubMedGoogle Scholar
  30. Ridley, W. P., Sidhu, R. S., Pyla, P. D., Nemeth, M. A., Breeze, M. L., & Astwood, J. D. (2002). Comparison of the nutritional profile of glyphosate-tolerant corn event NK603 with that of conventional corn (Zea mays L.). Journal of Agricultural and Food Chemistry, 50, 7235–7243.CrossRefPubMedGoogle Scholar
  31. Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant Journal, 23, 131–142.CrossRefPubMedGoogle Scholar
  32. Scherz, H., & Senser, F. (2000). Food composition and nutrition tables (6th ed.). Stuttgart, Germany: Medpharm Scientific Publication, CRC Press.Google Scholar
  33. Seebauer, J. R., Moose, S. P., Fabbri, B. J., Crossland, L. D., & Below, F. E. (2004). Amino acid metabolism in maize earshoots. Implications for assimilate preconditioning and nitrogen signaling. Plant Physiology, 136, 4326–4334.CrossRefPubMedGoogle Scholar
  34. Ter Braak, C. J. F., & Gremmen, N. J. M. (1987). Ecological amplitudes of plant species and the internal consistency of Ellenberg’s indicator values for moisture. Plant Ecology, 69, 79–87.CrossRefGoogle Scholar
  35. Voelker, T., & Kinney, A. J. (2001). Variations in the biosynthesis of seed-storage lipids. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 335–361.CrossRefPubMedGoogle Scholar
  36. Weber, E. J. (1969). Lipids of maturing grain of corn (Zea mays). I. Changes in lipid classes and fatty acid composition. Journal of the American Oil Chemists’ Society, 46, 485–488.CrossRefPubMedGoogle Scholar
  37. Wendland, M., Diepolder, M., & Capriel, P. (2007). Leitfaden für die Düngung von Acker- und Grünland. Bayerische Landesanstalt für Landwirtschaft (LfL).Google Scholar
  38. Xu, Z., & Godber, J. S. (1999). Purification and identification of components of γ-Oryzanol in rice bran oil. Journal of Agricultural and Food Chemistry, 47, 2724–2728.CrossRefPubMedGoogle Scholar
  39. Young, T. E., & Gallie, D. R. (2000). Programmed cell death during endosperm development. Plant Molecular Biology, 44, 283–301.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Richard M. Röhlig
    • 1
  • Joachim Eder
    • 2
  • Karl-Heinz Engel
    • 1
    Email author
  1. 1.Lehrstuhl für Allgemeine LebensmitteltechnologieTechnische Universität MünchenFreising-WeihenstephanGermany
  2. 2.Institut für Pflanzenbau und Pflanzenzüchtung, Bayerische Landesanstalt für LandwirtschaftFreisingGermany

Personalised recommendations