Metabolomics

, Volume 5, Issue 3, pp 346–353 | Cite as

Negative mode nanostructure-initiator mass spectrometry for detection of phosphorylated metabolites

  • Andrea Amantonico
  • Luca Flamigni
  • Reto Glaus
  • Renato Zenobi
Original Article

Abstract

The chemical complexity of the metabolome requires the development of new detection methods to enlarge the range of compounds detectable in a biological sample. Recently, a novel matrix-free laser desorption/ionization method called nanostructure-initiator mass spectrometry (NIMS) [Northen et al., Nature 449(7165):1033–1036, 2007] was reported. Here we investigate NIMS in negative ion mode for the detection of endogenous metabolites, namely small phosphorylated molecules. 3-Aminopropyldimethylethoxysilane was found to be suitable as initiator for the analytes studied and a limit of detection in the tens of femtomoles was reached. The detection of different endogenous cell metabolites in a yeast cell extract is demonstrated.

Keywords

Laser desorption/ionization mass spectrometry Phosphorylated metabolites Nucleotide detection Nanostructure initiator mass spectrometry Porous silicon 

Notes

Acknowledgments

We thank Jennifer Ewald, Benjamin Volkmer and Dr. Matthias Heinemann from the Institute of Molecular System Biology for the yeast cultivation, metabolism quenching, and metabolites extraction. We also thank Dr. Frank Krumeich for the SEM measurements. This work was supported by the ETH-INIT “Single cell metabolomics” project.

References

  1. Amantonico, A., Oh, J. Y., Sobek, J., Heinemann, M., & Zenobi, R. (2008). Mass spectrometric method for analyzing metabolites in yeast with single cell sensitivity. Angewandte Chemie International Edition, 47, 5382–5385. doi:10.1002/anie.200705923.CrossRefGoogle Scholar
  2. Cohen, L. H., & Gusev, A. I. (2002). Small molecule analysis by MALDI mass spectrometry. Analytical and Bioanalytical Chemistry, 373, 571–586. doi:10.1007/s00216-002-1321-z.PubMedCrossRefGoogle Scholar
  3. Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26, 51–78. doi:10.1002/mas.20108.PubMedCrossRefGoogle Scholar
  4. Dunn, W. B., Bailey, N. J., & Johnson, H. E. (2005). Measuring the metabolome: Current analytical technologies. Analyst (London), 130, 606–625. doi:10.1039/b418288j.CrossRefGoogle Scholar
  5. Edwards, J. L., Chisolm, C. N., Shackman, J. G., & Kennedy, R. T. (2006). Negative mode sheathless capillary electrophoresis electrospray ionization-mass spectrometry for metabolite analysis of prokaryotes. Journal of Chromatography A, 1106, 80–88. doi:10.1016/j.chroma.2005.08.082.PubMedCrossRefGoogle Scholar
  6. Edwards, J. L., & Kennedy, R. T. (2005). Metabolomic analysis of eukaryotic tissue and prokaryotes using negative mode MALDI time-of-flight mass spectrometry. Analytical Chemistry, 77, 2201–2209. doi:10.1021/ac048323r.PubMedCrossRefGoogle Scholar
  7. Fiehn, O. (2002). Metabolomics—the link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171. doi:10.1023/A:1013713905833.PubMedCrossRefGoogle Scholar
  8. Fiehn, O., & Kind, T. (2007). Metabolite profiling in blood plasma. In W. Weckwerth (Ed.), Metabolomics, methods and protocols (pp. 3–18). Totowa, NJ: Humana Press, Inc.Google Scholar
  9. Halimaoui, A. (1997). Porous silicon formation by anodisation. In L. Canham (Ed.), Properties of porous silicon (pp. 11–27). London: INSPEC.Google Scholar
  10. Hillenkamp, F., & Karas, M. (2007). The MALDI process and method. In F. Hillenkamp & J. Peter-Katalinić (Eds.), MALDI MS: A practical guide to instrumentation, methods and applications (p. 3). Weinheim: WILEY-VCH.Google Scholar
  11. Hollywood, K., Brison, D. R., & Goodacre, R. (2006). Metabolomics: Current technologies and future trends. Proteomics, 6, 4716–4723. doi:10.1002/pmic.200600106.PubMedCrossRefGoogle Scholar
  12. Nordstrom, A., Want, E., Northen, T., Lehtio, J., & Siuzdak, G. (2008). Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics. Analytical Chemistry, 80, 421–429. doi:10.1021/ac701982e.PubMedCrossRefGoogle Scholar
  13. Northen, T. R., Yanes, O., Northen, M. T., Marrinucci, D., Uritboonthai, W., Apon, J., et al. (2007). Clathrate nanostructures for mass spectrometry. Nature, 449, 1033–1036. doi:10.1038/nature06195.PubMedCrossRefGoogle Scholar
  14. Peterson, D. S. (2007). Matrix-free methods for laser desorption/ionization mass spectrometry. Mass Spectrometry Reviews, 26, 19–34. doi:10.1002/mas.20104.PubMedCrossRefGoogle Scholar
  15. Shrestha, B., Li, Y., & Vertes, A. (2008). Rapid analysis of pharmaceuticals and excreted xenobiotic and endogenous metabolites with atmospheric pressure infrared MALDI mass spectrometry. Metabolomics, 4, 297–311. doi:10.1007/s11306-008-0120-8.CrossRefGoogle Scholar
  16. Soga, T., Ueno, Y., Naraoka, H., Ohashi, Y., Tomita, M., & Nishioka, T. (2002). Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Analytical Chemistry, 74, 2233–2239. doi:10.1021/ac020064n.PubMedCrossRefGoogle Scholar
  17. Sun, G., Yang, K., Zhao, Z. D., Guan, S. P., Han, X. L., & Gross, R. W. (2007). Shotgun metabolomics approach for the analysis of negatively charged water-soluble cellular metabolites from mouse heart tissue. Analytical Chemistry, 79, 6629–6640. doi:10.1021/ac070843+.PubMedCrossRefGoogle Scholar
  18. Tomita, M., & Nishioka, T. (2005). Metabolomics: The frontier of systems biology. Tokyo: Springer-Verlag.Google Scholar
  19. Trauger, S. A., Go, E. P., Shen, Z. X., Apon, J. V., Compton, B. J., Bouvier, E. S. P., et al. (2004). High sensitivity and analyte capture with desorption/ionization mass spectrometry on silylated porous silicon. Analytical Chemistry, 76, 4484–4489. doi:10.1021/ac049657j.PubMedCrossRefGoogle Scholar
  20. Vaidyanathan, S., Jones, D., Ellis, J., Jenkins, T., Chong, C., Anderson, M., et al. (2007). Laser desorption/ionization mass spectrometry on porous silicon for metabolome analyses: Influence of surface oxidation. Rapid Communications in Mass Spectrometry, 21, 2157–2166. doi:10.1002/rcm.3078.PubMedCrossRefGoogle Scholar
  21. Villas-Boas, S. G., Mas, S., Akesson, M., Smedsgaard, J., & Nielsen, J. (2005). Mass spectrometry in metabolome analysis. Mass Spectrometry Reviews, 24, 613–646. doi:10.1002/mas.20032.PubMedCrossRefGoogle Scholar
  22. Weckwerth, W. (2003). Metabolomics in systems biology. Annual Review of Plant Biology, 54, 669–689. doi:10.1146/annurev.arplant.54.031902.135014.PubMedCrossRefGoogle Scholar
  23. Wei, J., Buriak, J. M., & Siuzdak, G. (1999). Desorption–ionization mass spectrometry on porous silicon. Nature, 399, 243–246. doi:10.1038/20400.PubMedCrossRefGoogle Scholar
  24. Woo, H. K., Northen, T. R., Yanes, O., & Siuzdak, G. (2008). Nanostructure-initiator mass spectrometry: A protocol for preparing and applying NIMS surfaces for high-sensitivity mass analysis. Nature Protocols, 3, 1341–1349. doi:10.1038/nprot.2008.110.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Andrea Amantonico
    • 1
  • Luca Flamigni
    • 1
  • Reto Glaus
    • 1
  • Renato Zenobi
    • 1
  1. 1.Department of Chemistry and Applied BiosciencesETH ZurichZurichSwitzerland

Personalised recommendations