Advertisement

Metabolomics

, Volume 5, Issue 3, pp 330–335 | Cite as

Metabolite profiling identifies the mycotoxin alternariol in the pathogen Stagonospora nodorum

  • Kar-Chun Tan
  • Robert D. Trengove
  • Garth L. Maker
  • Richard P. Oliver
  • Peter S. SolomonEmail author
Brief Report

Abstract

A recent comparative proteomics study identified the short-chain dehydrogenase (Sch1) as being required for asexual sporulation (Tan et al. Eukaryotic Cell 7:1916–1929, 2008). Metabolite profiling was undertaken on the mutant strains of Stagonospora nodorum lacking the Sch1 gene to help elucidate its role. Gas chromatography-mass spectrometry of the polar metabolites in the Sch1 mutants identified a secondary metabolite at a 200-fold greater concentration than observed in the wild-type strains. Comparative analysis of the secondary metabolite and the mycotoxin alternariol using ESI-MS/MS confirmed the identity of the compound as alternariol. This is the first report to confirm the presence of a mycotoxin in S. nodorum and compelling the field to consider the health implication of this disease.

Keywords

Alternariol Mycotoxin Metabolomics Stagonospora nodorum Pathogen 

Notes

Acknowledgements

This research was supported by the Grains Research and Development Corporation. K.-C.T. was funded by an Australian Postgraduate Award.

References

  1. Brugger, E. M., Wagner, J., Schumacher, D. M., et al. (2006). Mutagenicity of the mycotoxin alternariol in cultured mammalian cells. Toxicology Letters, 164, 221–230. doi: 10.1016/j.toxlet.2006.01.001.PubMedCrossRefGoogle Scholar
  2. Harrigan, G. G., Martino-Catt, S., & Glenn, K. C. (2007). Metabolomics, metabolic diversity and genetic variation in crops. Metabolomics, 3, 259–272. doi: 10.1007/s11306-007-0076-0.CrossRefGoogle Scholar
  3. Lehmann, L., Wagner, J., & Metzler, M. (2006). Estrogenic and clastogenic potential of the mycotoxin alternariol in cultured mammalian cells. Food and Chemical Toxicology, 44, 398–408. doi: 10.1016/j.fct.2005.08.013.PubMedCrossRefGoogle Scholar
  4. Lowe, R. G. T., Lord, M., Rybak, K., Trengove, R. D., Oliver, R. P., & Solomon, P. S. (2008). A metabolomic approach to dissecting osmotic stress in the wheat pathogen Stagonospora nodorum. Fungal Genetics and Biology, 45, 1479–1486. doi: 10.1016/j.fgb.2008.08.006.PubMedCrossRefGoogle Scholar
  5. Pfeiffer, E., Schebb, N. H., Podlech, J., & Metzler, M. (2007). Novel oxidative in vitro metabolites of the mycotoxins alternariol and alternariol methyl ether. Molecular Nutrition & Food Research, 51, 307–316. doi: 10.1002/mnfr.200600237.CrossRefGoogle Scholar
  6. Scott, P. M. (2001). Analysis of agricultural commodities and foods for Alternaria mycotoxins. Journal of AOAC International, 84, 1809–1817.PubMedGoogle Scholar
  7. Scott, P. M., Weber, D., & Kanhere, S. R. (1997). Gas chromatography-mass spectrometry of Alternaria mycotoxin. Journal of Chromatography. A, 765, 255–263. doi: 10.1016/S0021-9673(96)00917-X.PubMedCrossRefGoogle Scholar
  8. Solomon, P. S., Lowe, R. G. T., Tan, K.-C., Waters, O. D. C., Bailey, A., & Oliver, R. P. (2006a). Stagonospora nodorum; cause of Septoria nodorum blotch of wheat. Molecular Plant Pathology, 7, 147–156. doi: 10.1111/j.1364-3703.2006.00326.x.CrossRefGoogle Scholar
  9. Solomon, P. S., Lowe, R. G. T., Trengove, R. D., Rechberger, J., & Oliver, R. P. (2006b). Normalisation of metabolites in heterogenous systems using genomics. Analytical Biochemistry, 350, 156–158. doi: 10.1016/j.ab.2005.11.044.PubMedCrossRefGoogle Scholar
  10. Solomon, P. S., Rybak, K., Trengove, R. D., & Oliver, R. P. (2006c). Investigating the role of calcium/calmodulin-dependent protein signalling in Stagonospora nodorum. Molecular Microbiology, 62, 367–381. doi: 10.1111/j.1365-2958.2006.05380.x.PubMedCrossRefGoogle Scholar
  11. Solomon, P. S., Tan, K.-C., Sanchez, P., Cooper, R. M., & Oliver, R. P. (2004). The disruption of a Gα subunit sheds new light on the pathogenicity of Stagonospora nodorum on wheat. Molecular Plant-Microbe Interactions, 17, 456–466. doi: 10.1094/MPMI.2004.17.5.456.PubMedCrossRefGoogle Scholar
  12. Solomon, P. S., Waters, O. D. C., Joergens, C. I., et al. (2006d). Mannitol is required for asexual sporulation in the wheat pathogen Stagonospora nodorum (glume blotch). The Biochemical Journal, 399, 231–239. doi: 10.1042/BJ20060891.PubMedCrossRefGoogle Scholar
  13. Solomon, P. S., Waters, O. D. C., Simmonds, J., Cooper, R. M., & Oliver, R. P. (2005). The Mak2 MAP kinase signal transduction pathway is required for pathogenicity in Stagonospora nodorum. Current Genetics, 48, 60–68. doi: 10.1007/s00294-005-0588-y.PubMedCrossRefGoogle Scholar
  14. Tan, K.-C., Heazlewood, J. L., Millar, A. H., Thomson, G., Oliver, R. P., & Solomon, P. S. (2008). A signaling-regulated, short-chain dehydrogenase of Stagonospora nodorum regulates asexual development. Eukaryotic Cell, 7, 1916–1929. doi: 10.1128/EC.00237-08.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kar-Chun Tan
    • 1
  • Robert D. Trengove
    • 2
    • 3
  • Garth L. Maker
    • 4
  • Richard P. Oliver
    • 1
    • 3
  • Peter S. Solomon
    • 3
    • 5
    Email author
  1. 1.Australian Centre for Necrotrophic Fungal Pathogens, SABC, Faculty of Health SciencesMurdoch UniversityMurdochAustralia
  2. 2.Separation Science Laboratory, Faculty of Health SciencesMurdoch UniversityMurdochAustralia
  3. 3.Metabolomics AustraliaMurdoch UniversityPerthAustralia
  4. 4.School of Pharmacy, Faculty of Health SciencesMurdoch UniversityMurdochAustralia
  5. 5.Plant Cell Biology, School of Biology (RSBS)The Australian National UniversityCanberraAustralia

Personalised recommendations