Metabolomics

, Volume 5, Issue 3, pp 307–317

Quantitative analysis of metabolite concentrations in human urine samples using 13C{1H} NMR spectroscopy

  • Rustem A. Shaykhutdinov
  • Glen D. MacInnis
  • Reza Dowlatabadi
  • Aalim M. Weljie
  • Hans J. Vogel
Original Article

Abstract

Targeted profiling is a library-based method of using mathematically modeled reference spectra for quantification of metabolite concentrations in NMR mixture analysis. Metabolomics studies of biofluids, such as urine, represent a highly complex problem in this area, and for this reason targeted profiling of 1H NMR spectra can be hampered. A number of the issues relating to 1H NMR spectroscopy can be overcome using 13C{1H} NMR spectroscopy. In this work, a 13C{1H} NMR database was created using Chenomx NMR Suite, incorporating 120 metabolites. The 13C{1H} NMR database was standardized through the analysis of a series of metabolite solutions containing varying concentrations of 19 distinct metabolites, where the metabolite concentrations were varied across a range of values including biological ranges. Subsequently, the NMR spectra of urine samples were collected using 13C{1H} NMR spectroscopy and profiled using the 13C{1H} NMR library. In total, about 30 metabolites were conclusively identified and quantified in the urine samples using 13C{1H} NMR targeted profiling. The proton decoupling and larger spectral window provided easier identification and more accurate quantification for specific classes of metabolites, such as sugars and amino acids with overlap in the aliphatic region of the 1H NMR spectrum. We discuss potential application areas in which 13C{1H} NMR targeted profiling may be superior to 1H NMR targeted profiling.

Keywords

Carbon-13 NMR Targeted profiling Quantitative analysis 

References

  1. Aardema, M. J., & MacGregor, J. T. (2002). Toxicology and genetic toxicology in the new era of “toxicogenetics”: Impact of “-omics” technologies. Mutation Research, 499, 13–25. doi:10.1016/S0027-5107(01)00292-5.PubMedGoogle Scholar
  2. Belton, P. S., Colquhoun, I. J., Kemsley, E. K., et al. (1998). Application of chemometrics to the 1H NMR spectra of apple juices: Discrimination between apple varieties. Food Chemistry, 61, 207–213. doi:10.1016/S0308-8146(97)00103-9.CrossRefGoogle Scholar
  3. Bermel, W., Bertini, I., Felli, I. C., Piccioli, M., & Pierattelli, R. (2006). 13C-detected protonless NMR spectroscopy of proteins in solution. Progress in Nuclear Magnetic Resonance Spectroscopy, 48, 25–45. doi:10.1016/j.pnmrs.2005.09.002.CrossRefGoogle Scholar
  4. Burchiel, S. W., Knall, C. M., Davis, J. W., Paules, R. C., Boggs, S. E., & Afshari, C. A. (2001). Analysis of genetic and epigenetic mechanisms of toxicity: Potential roles of toxicogenomics and proteomics in toxicology. Toxicological Sciences, 59, 193–195. doi:10.1093/toxsci/59.2.193.PubMedCrossRefGoogle Scholar
  5. Chatham, J. C., & Seymour, A.-M. L. (2002). Cardiac carbohydrate metabolism in Zucker diabetic fatty rats. Cardiovascular Research, 55, 104–112. doi:10.1016/S0008-6363(02)00399-1.PubMedCrossRefGoogle Scholar
  6. Consonni, R., Cagliani, L. R., Benevelli, F., Spraul, M., Humpfer, E., & Stocchero, M. (2008). NMR and chemometric methods: A powerful combination for characterization of balsamic and traditional balsamic vinegars of Modena. Analytica Chimica Acta, 611, 31–40. doi:10.1016/j.aca.2008.01.065.PubMedCrossRefGoogle Scholar
  7. Duarte, I. F., Barros, A., Almeida, C., Spraul, M., & Gil, A. M. (2004). Multivariate analysis of NMR and FTIR data as a potential tool for the quality control of beer. Journal of Agricultural and Food Chemistry, 52, 1031–1038. doi:10.1021/jf030659z.PubMedCrossRefGoogle Scholar
  8. Duus, J. Ø., Goftredsen, C. H., & Bock, K. (2000). Carbohydrate structural determination by NMR spectroscopy: Modern methods and limitations. Chemical Reviews, 100, 4589–4614. doi:10.1021/cr990302n.PubMedCrossRefGoogle Scholar
  9. Eriksson, L., Antti, H., Gottfries, J., et al. (2004). Using chemometrics for navigating in the large data sets of genomics, proteomics, and metabonomics (gpm). Analytical and Bioanalytical Chemistry, 380, 419–429. doi:10.1007/s00216-004-2783-y.PubMedCrossRefGoogle Scholar
  10. Fan, T. W.-N. (1996). Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Progress in Nuclear Magnetic Resonance Spectroscopy, 28, 161–219.Google Scholar
  11. Fan, T. W. M., Lane, A. N., Shenker, M., Bartley, J. P., Crowley, D., & Higashi, R. M. (2001). Comprehensive chemical profiling of gramineous plant root exudates using high-resolution NMR and MS. Phytochemistry, 57, 209–221. doi:10.1016/S0031-9422(01)00007-3.PubMedCrossRefGoogle Scholar
  12. Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157–1161. doi:10.1038/81137.PubMedCrossRefGoogle Scholar
  13. Gorin, P. A. J. (1981). Carbon–13 nuclear magnetic resonance spectroscopy of polysaccharides. Advances in Carbohydrate Chemistry and Biochemistry, 38, 13–104. doi:10.1016/S0065-2318(08)60309-1.CrossRefGoogle Scholar
  14. Hatada, K., & Kitayama, T. (2004). NMR spectroscopy of polymers. Berlin: Springer.Google Scholar
  15. Hidalgo, F. J., & Zamora, R. (2003). Edible oil analysis by high-resolution nuclear magnetic resonance: Recent advances and future perspectives. Trends in Food Science & Technology, 14, 499–506.CrossRefGoogle Scholar
  16. Holmes, E., & Antti, H. (2002). Chemometric contributions to the evolution of metabonomics: Mathematical solutions to characterising and interpreting complex biological NMR spectra. Analyst (London), 127, 1549–1557. doi:10.1039/b208254n.CrossRefGoogle Scholar
  17. Holmes, E., Loo, R. L., Stamler, J., et al. (2008). Human metabolic phenotype diversity and its association with diet and blood pressure. Nature, 453, 396–400. doi:10.1038/nature06882.PubMedCrossRefGoogle Scholar
  18. Hyberts, S. G., Heffron, G. J., Tarragona, N. G., et al. (2007). Ultrahigh-resolution (1)H-(13)C HSQC spectra of metabolite mixtures using nonlinear sampling and forward maximum entropy reconstruction. Journal of the American Chemical Society, 129, 5108–5116. doi:10.1021/ja068541x.PubMedCrossRefGoogle Scholar
  19. Jeener, J., Meier, B. H., Bachmann, P., & Ernst, R. R. (1979). Investigation of exchange processes by two-dimensional NMR spectroscopy. The Journal of Chemical Physics, 71, 4546–4553. doi:10.1063/1.438208.CrossRefGoogle Scholar
  20. Keun, H. C., Beckonert, O., Griffin, J. L., et al. (2002). Cryogenic probe 13C NMR spectroscopy of urine for metabonomic studies. Analytical Chemistry, 74, 4588–4593. doi:10.1021/ac025691r.PubMedCrossRefGoogle Scholar
  21. Kikuchi, J., Shinozaki, K., & Hirayama, T. (2004). Stable isotope labeling of Arabidopsis thaliana for an NMR-based metabolomics approach. Plant and Cell Physiology, 45, 1099–1104. doi:10.1093/pcp/pch117.PubMedCrossRefGoogle Scholar
  22. Kovacs, H., Moskau, D., & Spraul, M. (2005). Cryogenically cooled probes—a leap in NMR technology. Progress in Nuclear Magnetic Resonance Spectroscopy, 46, 131–155. doi:10.1016/j.pnmrs.2005.03.001.CrossRefGoogle Scholar
  23. Krawczyk, H., Gryff-Keller, A., Gradowska, W., Duran, M., & Pronicka, E. (2001). 13C NMR spectroscopy: A convenient tool for detection of argininosuccinic aciduria. Journal of Pharmaceutical and Biomedical Analysis, 26, 401–408. doi:10.1016/S0731-7085(01)00420-4.PubMedCrossRefGoogle Scholar
  24. Lewis, I. A., Schommer, S. C., Hodis, B., et al. (2007). Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H–13C NMR spectra. Analytical Chemistry, 79, 9385–9390. doi:10.1021/ac071583z.PubMedCrossRefGoogle Scholar
  25. Lindon, J. C., Holmes, E., & Nicholson, J. K. (2001). Pattern recognition methods and applications in biomedical magnetic resonance. Progress in Nuclear Magnetic Resonance Spectroscopy, 39, 1–40. doi:10.1016/S0079-6565(00)00036-4.CrossRefGoogle Scholar
  26. Lindon, J. C., Holmes, E., & Nicholson, J. K. (2004). Toxicological applications of magnetic resonance. Progress in Nuclear Magnetic Resonance Spectroscopy, 45, 109–143. doi:10.1016/j.pnmrs.2004.05.001.CrossRefGoogle Scholar
  27. Lindon, J. C., Nicholson, J. K., & Everett, J. R. (1999). In Webb, G. A. (Ed.), NMR spectroscopy of biofluids. Annual reports on NMR spectroscopy (Vol. 38, pp. 1–88). London: Academic Press.Google Scholar
  28. Lindon, J. C., Nicholson, J. K., Holmes, S., & Everett, J. R. (2000). Metabonomics: Metabolic processes studied by NMR spectroscopy of biofluids. Concepts in Magnetic Resonance, 12, 289–320. doi:10.1002/1099-0534(2000)12:5<289::AID-CMR3>3.0.CO;2-W.CrossRefGoogle Scholar
  29. Lindon, J. C., Nicholson, J. K., Holmes, E., et al. (2003). Contemporary issues in toxicology the role of metabonomics in toxicology and its evaluation by the COMET project. Toxicology and Applied Pharmacology, 187, 137–146. doi:10.1016/S0041-008X(02)00079-0.PubMedCrossRefGoogle Scholar
  30. Malloy, C. R., Sherry, A. D., & Jeffrey, F. M. H. (1990). Analysis of tricarboxylic acid cycle of the heart using 13C isotope isomers. The American Journal of Physiology, 259, H987–H995.PubMedGoogle Scholar
  31. Moolenaar, S. H., Poggi-Bach, J., Engelke, U. F. H., et al. (1999). Defect in dimethylglycine dehydrogenase, a new inborn error of metabolism: NMR spectroscopy study. Clinical Chemistry, 45, 459–464.PubMedGoogle Scholar
  32. Nicholson, J. K., Connelly, J., Lindon, J. C., & Holmes, E. (2002). Metabonomics: A platform for studying drug toxicity and gene function. Nature Reviews. Drug Discovery, 1, 153–161. doi:10.1038/nrd728.PubMedCrossRefGoogle Scholar
  33. Norton, R. S., Zwick, J., & Béress, L. (1980). Natural-abundance 13C nuclear-magnetic-resonance study of toxin II from Anemonia sulcata. European Journal of Biochemistry, 113, 75–83.PubMedCrossRefGoogle Scholar
  34. Plumb, R., Granger, J., Stumpf, C., Wilson, I. D., Evans, J. A., & Lenz, E. M. (2003). Metabonomic analysis of mouse urine by liquid-chromatography-time of flight mass spectrometry (LC-TOFMS): Detection of strain, diurnal and gender differences. Analyst (London), 128, 819–823. doi:10.1039/b304296k.CrossRefGoogle Scholar
  35. Schleucher, J., Schwendinger, M., Sattler, M., et al. (1994). A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. Journal of Biomolecular NMR, 4, 301–306. doi:10.1007/BF00175254.PubMedCrossRefGoogle Scholar
  36. Shanaiah, N., Desilva, M. A., Gowda, G. A. N., Raftery, M. A., Hainline, B. E., & Raftery, D. (2007). Class selection of amino acid metabolites in body fluids using chemical derivatization and their enhanced 13C NMR. Proceedings of the National Academy of Sciences of the United States of America, 104, 11540–11544. doi:10.1073/pnas.0704449104.PubMedCrossRefGoogle Scholar
  37. Shearer, J., Duggan, G., Weljie, A., Hittel, D. S., Wasserman, D. H., & Vogel, H. J. (2008). Metabolomic profiling of dietary-induced insulin resistance in the high fat-fed C57BL/6 J mouse. Diabetes, Obesity & Metabolism, 10, 950–958.Google Scholar
  38. Tennant, R. W. (2002). The National Center for Toxicogenomics: Using new technologies to inform mechanistic toxicology. Environmental Health Perspectives, 110, A8–A10.PubMedGoogle Scholar
  39. Viant, M. R. (2003). Improved methods for the acquisition and interpretation of NMR metabolomic data. Biochemical and Biophysical Research Communications, 310, 943–948. doi:10.1016/j.bbrc.2003.09.092.PubMedCrossRefGoogle Scholar
  40. Voehler, M. W., Collier, G., Young, J. K., Stone, M. P., & Germann, M. W. (2006). Performance of cryogenic probes as a function of ionic strength and sample tube geometry. Journal of Magnetic Resonance (San Diego, Calif.), 183, 102–109. doi:10.1016/j.jmr.2006.08.002.Google Scholar
  41. Wehrli, S. L., Berry, G. T., Palmieri, M., Mazur, A., Elsas, L., I. I. I., & Segal, S. (1997). Urinary galactonate in patients with galactosemia: Quantitation by nuclear magnetic resonance spectroscopy. Pediatric Research, 42, 855–861. doi:10.1203/00006450-199712000-00022.PubMedCrossRefGoogle Scholar
  42. Weljie, A. M., Dowlatabadi, R., Miller, B. J., Vogel, H. J., & Jirik, F. R. (2007). An inflammatory arthritis-associated metabolite biomarker pattern revealed by 1H NMR spectroscopy. Journal of Proteome Research, 6, 3456–3464. doi:10.1021/pr070123j.PubMedCrossRefGoogle Scholar
  43. Weljie, A., Newton, J., Jirik, F. R., & Vogel, H. J. (2008). Evaluating low-intensity unknown signals in quantitative proton NMR mixture analysis. Analytical Chemistry, 80, 8956–8965.Google Scholar
  44. Weljie, A., Newton, J., Mercier, P., Carlson, E., & Slupsky, C. (2006). Targeted profiling: Quantitative analysis of 1H NMR metabolomics data. Analytical Chemistry, 78, 4430–4442. doi:10.1021/ac060209g.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Rustem A. Shaykhutdinov
    • 1
  • Glen D. MacInnis
    • 1
  • Reza Dowlatabadi
    • 1
    • 2
  • Aalim M. Weljie
    • 1
  • Hans J. Vogel
    • 1
  1. 1.Department of Biological Sciences, Metabolomics Research CentreUniversity of CalgaryCalgaryCanada
  2. 2.Department of Medicinal Chemistry, Faculty of PharmacyTehran University of Medical SciencesTehranIran

Personalised recommendations