, 5:199 | Cite as

A direct cell quenching method for cell-culture based metabolomics

  • Quincy TengEmail author
  • Wenlin Huang
  • Timothy W. Collette
  • Drew R. Ekman
  • Chalet Tan
Original Article


A crucial step in metabolomic analysis of cellular extracts is the cell quenching process. The conventional method first uses trypsin to detach cells from their growth surface. This inevitably changes the profile of cellular metabolites since the detachment of cells from the extracellular matrix alters their physiology. This conventional method also includes time consuming wash/centrifuge steps after trypsinization, but prior to quenching cell activity. During this time, a considerable portion of intracellular metabolites are lost, rendering the conventional method less than ideal for application to metabolomics. We report here a novel sample preparation method for metabolomics applications using adherent mammalian cells, which eliminates the time consumption and physiological stress of the trypsinization and wash/centrifuge steps. This new method was evaluated in the study of metabolic changes caused by 17α-ethynylestradiol (EE2) in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 human breast cancer cell lines using NMR spectroscopy. The results demonstrated that our direct cell quenching method is rapid, effective, and exhibits greater metabolite retention, providing an increase of approximately a factor of 50 compared to the conventional method.


Cellular metabolite Cell-culture based metabolomics Direct cell quenching Metabolite profiling of breast cancer cells 



This work was funded in part through the Computational Toxicology Program of the U.S. EPA Office of Research and Development and the U.S. EPA Office of Science Council Policy. It has been subjected to review by the National Exposure Research Laboratory and approved for publication. Approval does not signify that the contents reflect the views of the Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.


  1. Bax, A., & Davis, D. G. (1985). MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. Journal of Magnetic Resonance (San Diego, Calif), 65, 355–360.CrossRefGoogle Scholar
  2. Bax, A., Griffey, R. H., & Hawkins, B. L. (1983). Correlation of proton and nitrogen-15 chemical shifts by multiple quantum NMR. Journal of Magnetic Resonance (San Diego, Calif), 55, 301–315.CrossRefGoogle Scholar
  3. Bax, A., & Summers, M. F. (1986). Proton and carbon-13 assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR. Journal of the American Chemical Society, 108, 2093–2094. doi: 10.1021/ja00268a061.CrossRefGoogle Scholar
  4. Beloueche-Babari, M., Jackson, L. E., Al-Saffar, N. M. S., et al. (2006). Identification of magnetic resonance detectable metabolic changes associated with inhibition of phosphoinositide 3-kinase signaling in human breast cancer cells. Molecular Cancer Therapeutics, 5, 187–196. doi: 10.1158/1535-7163.MCT-03-0220.PubMedCrossRefGoogle Scholar
  5. Bertram, H. C., Malmendal, A., Petersen, B. O., et al. (2007). Effect of magnetic field strength on NMR-based metabonomic human urine data: Comparative study of 250, 400, 500, and 800 MHz. Analytical Chemistry, 79, 7110–7115. doi: 10.1021/ac070928a.PubMedCrossRefGoogle Scholar
  6. Britten, R. J., & McClure, Y. (1962). The amino acid pool in Escherichia coli. Bacteriological Reviews, 26, 292–335.PubMedGoogle Scholar
  7. Claudino, W. M., Quattrone, A., Biganzoli, L., et al. (2007). Metabolomics: Available results, current research projects in breast cancer, and future applications. Journal of Clinical Oncology, 25, 2840–2846. doi: 10.1200/JCO.2006.09.7550.PubMedCrossRefGoogle Scholar
  8. Davis, D. L., & Bradlow, H. L. (1995). Can environmental estrogens cause breast cancer? Scientific American, 273, 166–172.Google Scholar
  9. Davis, D. L., Bradlow, H. L., Wolff, M., et al. (1993). Medical hypothesis: Xenoestrogens as preventable causes of breast cancer. Environmental Health Perspectives, 101, 372–377. doi: 10.2307/3431889.PubMedCrossRefGoogle Scholar
  10. de Koning, W., & van Dam, K. (1992). A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Analytical Biochemistry, 204, 118–123. doi: 10.1016/0003-2697(92)90149-2.PubMedCrossRefGoogle Scholar
  11. Ekman, D. R., Teng, Q., Jensen, K. M., et al. (2007). NMR analysis of male fathead minnow urinary metabolites a potential approach for studying impacts of chemical exposures. Aquatic Toxicology (Amsterdam, Netherlands), 85, 104–112. doi: 10.1016/j.aquatox.2007.08.005.Google Scholar
  12. Ekman, D. R., Teng, Q., Villeneuve, D. L., et al. (2008). Investigating compensation and recovery of fathead minnow (Pimephales promelas) exposed to 17β-ethynylestradiol with metabolite profiling. Environmental Science and Technology, 42, 4188–4194. doi: 10.1021/es8000618.PubMedCrossRefGoogle Scholar
  13. Fan, T. W. M. (1996). Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Progress in Nuclear Magnetic Resonance Spectroscopy, 28, 161–219.Google Scholar
  14. Green, K. A., & Carroll, J. S. (2007). Oestrogen-receptor-mediated transcription and the influence of co-factors and chromatin state. Nature Reviews Cancer, 7, 713–722. doi: 10.1038/nrc2211.PubMedCrossRefGoogle Scholar
  15. Harris, R. K., Becker, E. D., Menezes, S. M. C. D., et al. (2001). NMR Nomenclature nuclear spin properties and conventions for chemical shifts. Pure and Applied Chemistry, 73, 1795–1818. doi: 10.1351/pac200173111795.CrossRefGoogle Scholar
  16. Kell, D. B. (2004). Metabolomics and systems biology: Making sense of the soup. Current Opinion in Microbiology, 7, 296–307. doi: 10.1016/j.mib.2004.04.012.PubMedCrossRefGoogle Scholar
  17. Keun, H. C., Ebbels, T. M. D., Antti, H., et al. (2002). Analytical reproducibility in 1H NMR based metabonomic urinalysis. Chemical Research in Toxicology, 15, 1380–1386. doi: 10.1021/tx0255774.PubMedCrossRefGoogle Scholar
  18. Koo, S. H. G., & Al-Rubeai, M. (2007). Metabolomics as a complementary tool in cell culture. Biotechnology and Applied Biochemistry, 47, 71–84. doi: 10.1042/BA20060221.CrossRefGoogle Scholar
  19. Lane, A. N., & Fan, T. W. M. (2007). Quantification and identification of isotopomer distributions of metabolites in crude cell extracts using 1H TOCSY. Metabolomics, 3, 79–86. doi: 10.1007/s11306-006-0047-x.CrossRefGoogle Scholar
  20. Lindon, J. C., Nicholson, J. K., & Everett, J. R. (1999). NMR spectroscopy of biofluids. Annual Review on NMR Spectroscopy, 38, 1–88. doi: 10.1016/S0066-4103(08)60035-6.CrossRefGoogle Scholar
  21. National Research Council. (2007). Toxicity testing in the 21st century: A vision and a strategy. Washington, DC: National Academies Press.Google Scholar
  22. Nicholson, J. K., & Foxall, P. J. D. (1995). 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Analytical Chemistry, 67, 793–811. doi: 10.1021/ac00101a004.PubMedCrossRefGoogle Scholar
  23. Robertson, D. G. (2005). Metabonomics in toxicology: A review. Toxicological Sciences, 85, 809–822. doi: 10.1093/toxsci/kfi102.PubMedCrossRefGoogle Scholar
  24. Safe, S. H. (1995). Do environmental estrogens playa role in development of breast cancer in women and male reproductive problems? Human and Ecological Risk Assessment, 1, 17–24.Google Scholar
  25. Shaka, A. J., Lee, C. J., & Pines, A. (1988). Iterative schemes for bilinear operators; application to spin decoupling. Journal of Magnetic Resonance (San Diego, Calif.), 77, 274–293.Google Scholar
  26. Smeaton, J. R., & Elliott, W. H. (1967). Selective release of ribonuclease-inhibitor from Bacillus subtilis. Biochemical and Biophysical Research Communications, 26, 75–81. doi: 10.1016/0006-291X(67)90255-0.PubMedCrossRefGoogle Scholar
  27. States, D. J., Haberkorn, R. A., & Ruben, D. J. (1982). A two-domensional nuclear Overhauser experiment with pure absorption phase in four quadrants. Journal of Magnetic Resonance (San Diego, Calif), 48, 286–292.CrossRefGoogle Scholar
  28. Ulrich, E. L., Akutsu, H., Doreleijers, J. F., et al. (2008). BioMagResBank. Nucleic Acids Research, 36, D402–D408. doi: 10.1093/nar/gkm957.PubMedCrossRefGoogle Scholar
  29. Viant, M. R. (2007). Revealing the metabolome of animal tissues using 1H nuclear magnetic resonance spectroscopy. In W. Weckwerth (Ed.), Methods in Molecular Biology. Clifton, NJ: Humana Press.Google Scholar
  30. Villas-Boas, S. G., Hojer-Pedersen, J., Akesson, M., et al. (2005). Global metabolome analysis of yeasts: Complete evaluation of sample preparation. Yeast (Chichester, England), 22, 1155–1169. doi: 10.1002/yea.1308.CrossRefGoogle Scholar
  31. Villas-Boas, S. G., Nielsen, J., Smedsgaard, J., et al. (2007). Metabolome Analysis: An introduction. Wiley.Google Scholar
  32. Warburg, O. (1956). On respiratory impairment in cancer cells. Science, 124, 269–270.PubMedGoogle Scholar
  33. Warburg, O., Posener, K., & Negelei, E. (1924) Ueber den Stoffwechsel der Tumoren. Biochem. Z. 152, 319–344. (German). Reprinted in Warburg, O. (1930). On metabolism of tumors. Publisher: Constable, London.Google Scholar
  34. Willker, W., Leibfritz, D., Kerssebaum, R., & Bermel, W. (1993). Gradient selection in inverse heteronuclear correlation spectroscopy. Magnetic Resonance in Chemistry, 31, 287–292. doi: 10.1002/mrc.1260310315.CrossRefGoogle Scholar
  35. Wishart, D. S., Tzur, D., Knox, C., et al. (2007). HMDB: The human metabolome database. Nucleic Acids Research, 35, D521–D526. doi: 10.1093/nar/gkl923.PubMedCrossRefGoogle Scholar
  36. Yang, C., Richardson, A. D., Smith, J. W., & Osterman, A. (2007). Comparative metabolomics of breast cancer. Pacific Symposium on Biocomputing, 12, 181–192.CrossRefGoogle Scholar
  37. Zhu, G., & Bax, A. (1992). Two-dimensional linear prediction for signals truncated in both dimensions. Journal of Magnetic Resonance (San Diego, Calif), 98, 192–199.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Quincy Teng
    • 1
    Email author
  • Wenlin Huang
    • 1
  • Timothy W. Collette
    • 1
  • Drew R. Ekman
    • 1
  • Chalet Tan
    • 2
  1. 1.National Exposure Research LaboratoryAthensUSA
  2. 2.Department of Pharmaceutical Sciences, College of Pharmacy and Health SciencesMercer UniversityAtlantaUSA

Personalised recommendations