Metabolomics

, Volume 5, Issue 2, pp 183–198 | Cite as

Proton NMR quantitative profiling for quality assessment of greenhouse-grown tomato fruit

  • Catherine Deborde
  • Mickaël Maucourt
  • Pierre Baldet
  • Stéphane Bernillon
  • Benoît Biais
  • Gilles Talon
  • Carine Ferrand
  • Daniel Jacob
  • Hélène Ferry-Dumazet
  • Antoine de Daruvar
  • Dominique Rolin
  • Annick Moing
Original Article

Abstract

Tomato is an essential crop in terms of economic importance and nutritional quality. In France, the third most important region for tomato (Solanum lycopersicum L.) production is Aquitaine where the major part of production is now grown soilless under greenhouse conditions with harvest from March to November. Tomato fruit quality at harvest is a direct function of its metabolite content at that time. The aim of this work was to use a global approach to characterize changes in the fruit organoleptic quality at harvest under commercial culture conditions during an entire season for two varieties and two different fertilization practices (with or without recycling of the nutrient solution) for one variety. Absolute quantification data of 32 major compounds in fruit without seeds were obtained through untargeted (proton nuclear magnetic resonance, 1H-NMR) quantitative profiling. These data were complemented by colorimetric analysis of ascorbate and total phenolics. They were analyzed with chemometric approaches. Principal component analysis (PCA) or partial least square analyses (PLS) revealed more discriminant metabolites for season than for variety and showed that nutrient solution recycling had very little effect on fruit composition. These tendencies were confirmed with univariate analyses. 1H-NMR profiling complemented with colorimetric analyses therefore provided a diagnostic tool to follow the changes in organoleptic and nutritional quality of tomato. In addition the quantitative information generated will help to increase our knowledge on the mechanisms of plant response to environmental modifications.

Keywords

Solanum lycopersicum Fruit quality 1H-NMR Polar metabolites Metabolic fingerprinting Metabolomics Cultivation practices 

Abbreviations

AEAC

Ascorbic acid equivalent antioxidant capacity

DW

Dry weight

EC

Electroconductivity

HCA

Hierarchical clustering analysis

NMR

Nuclear magnetic resonance

PCA

Principal component analysis

PLS

Partial least square regression

TSP

(Trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt

Supplementary material

11306_2008_134_MOESM1_ESM.rtf (4.1 mb)
MOESM1 (RTF 4,200 kb)
11306_2008_134_MOESM2_ESM.doc (26 kb)
MOESM2 (DOC 26 kb)
11306_2008_134_MOESM3_ESM.doc (23 kb)
MOESM3 (DOC 23 kb)

References

  1. Agius, F., Gonzalez-Lamothe, R., Caballero, J. L., Munoz-Blanco, J., Botella, M. A., & Valpuesta, V. (2003). Engineering increased vitamin C levels in plants by overexpression of a d-galacturonic acid reductase. Nature Biotechnology, 21, 177–181. doi:10.1038/nbt777.PubMedCrossRefGoogle Scholar
  2. Akoka, S., Barantin, L., & Trierweiler, M. (1999). Concentration measurement by proton NMR using the ERETIC method. Analytical Chemistry, 71, 2554–2557. doi:10.1021/ac981422i.CrossRefGoogle Scholar
  3. Alhagdow, M., Mounet, F., Gilbert, L., et al. (2007). Silencing of the mitochondrial ascorbate synthesizing enzyme l-galactono-1, 4-lactone dehydrogenase affects plant and fruit development in tomato (1 w OA). Plant Physiology, 145, 1408–1422. doi:10.1104/pp.107.106500.PubMedCrossRefGoogle Scholar
  4. Anza, M., Riga, P., & Garbisu, C. (2006). Effects of variety and growth season on the organoleptic and nutritional quality of hydroponically grown tomato. Journal of Food Quality, 29, 16–37. doi:10.1111/j.1745-4557.2006.00053.x.CrossRefGoogle Scholar
  5. Bai, Y. L., & Lindhout, P. (2007). Domestication and breeding of tomatoes: What have we gained and what can we gain in the future? Annals of Botany, 100, 1085–1094. doi:10.1093/aob/mcm150.PubMedCrossRefGoogle Scholar
  6. Baldet, P., Devaux, C., Chevalier, C., Brouquisse, R., Just, D., & Raymond, P. (2002). Contrasted responses to carbohydrate limitation in tomato fruit at two stages of development. Plant, Cell & Environment, 25, 1639–1649. doi:10.1046/j.1365-3040.2002.00941.x.CrossRefGoogle Scholar
  7. Bergqvist, J., Dokoozlian, N., & Ebisuda, N. (2001). Sunlight exposure and temperature effects on berry growth and composition of Cabernet Sauvignon and Grenache in the central San Joaquin Valley of California. American Journal of Enology and Viticulture, 52, 1–7. http://www.ajevonline.org/cgi/content/abstract/52/1/1.
  8. Boggio, S. B., Palatnik, J. F., Heldt, H. W., & Valle, E. M. (2000). Changes in amino acid composition and nitrogen metabolizing enzymes in ripening fruits of Lycopersicon esculentum Mill. Plant Science, 159, 125–133. doi:10.1016/S0168-9452(00)00342-3.PubMedCrossRefGoogle Scholar
  9. Bouche, N., & Fromm, H. (2004). GABA in plants: Just a metabolite? Trends in Plant Science, 9, 110–115. doi:10.1016/j.tplants.2004.01.006.PubMedCrossRefGoogle Scholar
  10. Capanoglu, E., Beekwilder, J., Boyacioglu, D., Hall, R. D., & De Vos, R. (2008). Changes in antioxidant and metabolite profiles during production of tomato paste. Journal of Agricultural and Food Chemistry, 56, 964–973. doi:10.1021/jf072990e.PubMedCrossRefGoogle Scholar
  11. Carrari, F., Baxter, C. J., Usadel, B., et al. (2006). Integrated analysis of metabolites and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiology, 142, 1380–1396. doi:10.1104/pp.106.088534.PubMedCrossRefGoogle Scholar
  12. Davies, J. N., & Hobson, G. E. (1981). The constituents of tomato fruit—the influence of environment, nutrition, and genotype. CRC Critical Reviews in Food Science and Nutrition, 15, 205–280.PubMedCrossRefGoogle Scholar
  13. Dumas, Y., Dadomo, M., Lucca, G. D., & Grolier, P. (2003). Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. Journal of the Science of Food and Agriculture, 83, 369–382. doi:10.1002/jsfa.1370.CrossRefGoogle Scholar
  14. Fait, A., Fromm, H., Walter, D., Galili, G., & Fernie, A. R. (2008). Highway or byway: The metabolic role of the GABA shunt in plants. Trends in Plant Science, 13, 14–19. doi:10.1016/j.tplants.2007.10.005.PubMedCrossRefGoogle Scholar
  15. Fan, T. W. M. (1996). Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Progress in Nuclear Magnetic Resonance Spectroscopy, 28, 161–219. doi:10.1016/0079-6565(95)01017-3.Google Scholar
  16. Fernie, A. R., Trethewey, R. N., Krotzky, A. J., & Willmitzer, L. (2004). Innovation—metabolite profiling: From diagnostics to systems biology. Nature Reviews Molecular Cell Biology, 5, 763–769. doi:10.1038/nrm1451.PubMedCrossRefGoogle Scholar
  17. Gautier, H., Diakou-Verdin, V., Benard, C., et al. (2008). How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance? Journal of Agricultural and Food Chemistry, 56, 1241–1250. doi:10.1021/jf072196t.PubMedCrossRefGoogle Scholar
  18. Giliberto, L., Perrotta, G., Pallara, P., et al. (2005). Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiology, 137, 199–208. doi:10.1104/pp.104.051987.PubMedCrossRefGoogle Scholar
  19. Guy, C., Kaplan, F., Kopka, J., Selbig, J., & Hincha, D. K. (2008). Metabolomics of temperature stress. Physiologia Plantarum, 132, 220–235.PubMedGoogle Scholar
  20. Hao, X., & Papadopoulos, A. P. (2002). Growth, photosynthesis and productivity of greenhouse tomato cultivated in open or closed rockwool systems. Canadian Journal of Plant Science, 82, 771–780. http://pubs.nrc-cnrc.gc.ca/aic-journals/oct02.html.
  21. Imeh, U., & Khokhar, S. (2002). Distribution of conjugated and free phenols in fruits: Antioxidant activity and cultivar variations. Journal of Agricultural and Food Chemistry, 20, 6301–6306. doi:10.1021/jf020342j.CrossRefGoogle Scholar
  22. Inoue, K., Shirai, T., Ochiai, H., et al. (2003). Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives. European Journal of Clinical Nutrition, 57, 490–495. doi:10.1038/sj.ejcn.1601555.PubMedCrossRefGoogle Scholar
  23. Jahangir, M., Kim, H. K., Choi, Y. H., & Verpoorte, R. (2008). Metabolomic response of Brassica rapa submitted to pre-harvest bacterial contamination. Food Chemistry, 107, 362–368. doi:10.1016/j.foodchem.2007.08.034.CrossRefGoogle Scholar
  24. Johnson, H. E., Broadhurst, D., Goodacre, R., & Smith, A. R. (2003). Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry, 62, 919–928. doi:10.1016/S0031-9422(02)00722-7.PubMedCrossRefGoogle Scholar
  25. Kampfenkel, K., van Montagu, M., & Inze, D. (1995). Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Analytical Biochemistry, 225, 165–167. doi:10.1006/abio.1995.1127.PubMedCrossRefGoogle Scholar
  26. Kavanaugh, C. J., Trumbo, P. R., & Ellwood, K. C. (2007). The US food and drug administration’s evidence-based review for qualified health claims: Tomatoes, lycopene, and cancer. Journal of the National Cancer Institute, 99, 1074–1085. doi:10.1093/jnci/djm037.PubMedCrossRefGoogle Scholar
  27. Kemsley, E. K. (1998). Discriminant analysis and class modelling of spectroscopic data. Chichester, UK: Wiley.Google Scholar
  28. Krapp, A., & Stitt, M. (1995). An evaluation of direct and indirect mechanisms for the “sink-regulation” of photosynthesis in spinach: Changes in gas exchange, carbohydrates, metabolites, enzyme activities and steady-state transcript levels after cold-girdling source leaves. Planta, 195, 313–323. doi:10.1007/BF00202587.CrossRefGoogle Scholar
  29. Krauss, S., Schnitzler, W. H., Grassmann, J., & Woitke, M. (2006). The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato. Journal of Agricultural and Food Chemistry, 54, 441–448. doi:10.1021/jf051930a.PubMedCrossRefGoogle Scholar
  30. Krishnan, P., Kruger, N. J., & Ratcliffe, R. G. (2005). Metabolite fingerprinting and profiling in plants using NMR. Journal of Experimental Botany, 56, 255–265. doi:10.1093/jxb/eri010.PubMedCrossRefGoogle Scholar
  31. Le Gall, G., Colquhoun, I. J., Davis, A. L., Collins, G. J., & Verhoeyen, M. E. (2003). Metabolite profiling of tomato (Lycopersicon esculentum) using 1H-NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. Journal of Agricultural and Food Chemistry, 51, 2447–2456. doi:10.1021/jf0259967.PubMedCrossRefGoogle Scholar
  32. Lindon, J. C., Holmes, E., & Nicholson, J. K. (2001). Pattern recognition methods and applications in biomedical magnetic resonance. Progress in Nuclear Magnetic Resonance Spectroscopy, 39, 1–40. doi:10.1016/S0079-6565(00)00036-4.CrossRefGoogle Scholar
  33. Marc, F., Briosbarre, F., Davin, A., Baccaunaud, M., & Ferrand, C. (2004). Evaluation du pouvoir antioxydant (TEAC) d’extraits de végétaux en vue d’utilisations alimentaires. Sciences des Aliments, 24, 399–414. doi:10.3166/sda.24.399-414.CrossRefGoogle Scholar
  34. Mattoo, A. K., Sobolev, A. P., Neelam, A., Goyal, R. K., Handa, A. K., & Segre, A. L. (2006). Nuclear magnetic resonance spectroscopy-based metabolite profiling of transgenic tomato fruit engineered to accumulate spermidine and spermine reveals enhanced anabolic and nitrogen–carbon interactions. Plant Physiology, 142, 1759–1770. doi:10.1104/pp.106.084400.PubMedCrossRefGoogle Scholar
  35. Mcneil, S. D., Nuccio, M. L., & Hanson, A. D. (1999). Betaines and related osmoprotectants targets for metabolic engineering of stress resistance. Plant Physiology, 120, 945–949. doi:10.1104/pp.120.4.945.PubMedCrossRefGoogle Scholar
  36. Miller, J. C., & Tanksley, S. D. (1990). RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theoretical and Applied Genetics, 80, 437–448. doi:10.1007/BF00226743.Google Scholar
  37. Moco, S., Capanoglu, E., Tikunov, Y., et al. (2007). Tissue specialization at the metabolite level is perceived during the development of tomato fruit. Journal of Experimental Botany, 58, 4131–4146. doi:10.1093/jxb/erm271.PubMedCrossRefGoogle Scholar
  38. Moing, A., Maucourt, M., Renaud, C., et al. (2004). Quantitative metabolic profiling through one-dimensional 1H-NMR analyses: Application to plant genetics and functional genomics. Functional Plant Biology, 31, 889–902. doi:10.1071/FP04066.CrossRefGoogle Scholar
  39. Mounet, F., Lemaire-Chamley, M., Maucourt, M., et al. (2007). Quantitative metabolic profiles of tomato flesh and seeds during fruit development: Complementary analysis with ANN and PCA. Metabolomics, 3, 273–288. doi:10.1007/s11306-007-0059-1.CrossRefGoogle Scholar
  40. Pereira, G. E., Gaudillère, J. P., van Leeuven, C., et al. (2006a). 1H NMR metabolic fingerprinting of grape berry: Comparison of vintage and soil effects in Bordeaux grapevine growing areas. Analytica Chimica Acta, 563, 346–352. doi:10.1016/j.aca.2005.11.007.CrossRefGoogle Scholar
  41. Pereira, G. E., Gaudillère, J. P., Pieri, P., et al. (2006b). Microclimate influence on mineral and metabolic profiles of grape berries. Journal of Agricultural and Food Chemistry, 54, 6765–6775. doi:10.1021/jf061013k.PubMedCrossRefGoogle Scholar
  42. Raffo, A., La Malfa, G., Fogliano, V., Malani, G., & Quaglia, G. (2006). Seasonal variations in antioxidant components of cherry tomatoes (Lycopersicon esculentum cv. Naomi F1). Journal of Food Composition and Analysis; An Official Publication of the United Nations University, International Network of Food Data Systems, 19, 11–19. doi:10.1016/j.jfca.2005.02.003.Google Scholar
  43. Rolin, D., Baldet, P., Just, D., Chevalier, C., Biran, M., & Raymond, P. (2000). NMR study of low subcellular pH during the development of cherry tomato fruit. Australian Journal of Plant Physiology, 27, 61–69. doi:10.1071/PP99051.Google Scholar
  44. Rosales, M. A., Rubio-Wilhelmi, M. M., Castellano, R., Castilla, N., Ruiz, J. M., & Romero, L. (2007). Sucrolytic activities in cherry tomato fruits in relation to temperature and solar radiation. Scientia Horticulturae, 113, 244–249. doi:10.1016/j.scienta.2007.03.015.CrossRefGoogle Scholar
  45. Rosales, M. A., Ruiz, J. M., Hernandez, J., Soriano, T., Castilla, N., & Romero, L. (2006). Antioxidant content and ascorbate metabolism in cherry tomato exocarp in relation to temperature and solar radiation. Journal of the Science of Food and Agriculture, 86, 1545–1551. doi:10.1002/jsfa.2546.CrossRefGoogle Scholar
  46. Ruffner, H. P., Hawker, J. S., & Hale, C. R. (1976). Temperature and enzymic control of malate metabolism in berries of Vitis vinifera. Phytochemistry, 15, 1877–1880. doi:10.1016/S0031-9422(00)88835-4.CrossRefGoogle Scholar
  47. Ruffner, H. P., Possner, D., Brem, S., & Rast, D. M. (1984). The physiological role of malic enzyme in grape ripening. Planta, 160, 444–448. doi:10.1007/BF00429761.CrossRefGoogle Scholar
  48. Saeed, A., Sharov, V., White, J., et al. (2003). TM4: A free, open-source system for microarray data management and analysis. BioTechniques, 34, 374–378.PubMedGoogle Scholar
  49. Sas Institute. (1990). SAS/STAT user’s guide, version 6 (4th ed.). Cary, NC: SAS Institute Inc.Google Scholar
  50. Schauer, N., Zamir, D., & Fernie, A. R. (2005). Metabolic profiling of leaves and fruit of wild species tomato: A survey of the Solanum lycopersicum complex. Journal of Experimental Botany, 56, 297–307. doi:10.1093/jxb/eri057.PubMedCrossRefGoogle Scholar
  51. Shulaev, V., Cortes, D., Miller, G., & Mittler, R. (2008). Metabolomics for plant stress response. Physiologia Plantarum, 132, 199–208.PubMedGoogle Scholar
  52. Spanos, G., & Wrolstad, R. (1990). Berry phenolics and their antioxidant activity. Journal of Agricultural and Food Chemistry, 38, 1565–1571. doi:10.1021/jf00097a030.CrossRefGoogle Scholar
  53. Stanghellini, C., van Meurs, W. T. M., Corver, F., van Dullemane, E., & Simonse, L. (1998). Combined effect of climate and concentration of the nutrient solution on a greenhouse tomato crop. II: Yield quantity and quality. Acta Horticulturae, 458, 231–237. http://www.actahort.org/books/458/458_27.htm.Google Scholar
  54. Stevens, A. M., Kader, A. A., & Albright, M. (1979). Potential for increasing tomato flavor via increased sugar acid content. Journal of the American Society for Horticultural Science, 104, 40–42.Google Scholar
  55. Stevens, M. A. (1972). Citrate and malate concentrations in tomato fruits: Genetic control and maturational effects. Journal of the American Society for Horticultural Science, 97, 655–658.Google Scholar
  56. Stevens, M. A., Kader, A. A., Albright-Holton, M., & Algazi, M. (1977). Genotypic variation for flavor and composition in fresh market tomatoes. Journal of the American Society for Horticultural Science, 102, 680–689.Google Scholar
  57. Stevens, R., Buret, M., Garchery, C., Carretero, Y., & Causse, M. (2006). Technique for rapid, small-scale analysis of vitamin C levels in fruit and application to a tomato mutant collection. Journal of Agricultural and Food Chemistry, 54, 6159–6165. doi:10.1021/jf061241e.PubMedCrossRefGoogle Scholar
  58. Sumner, L. W., Mendes, P., & Dixon, R. A. (2003). Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry, 62, 817–836. doi:10.1016/S0031-9422(02)00708-2.PubMedCrossRefGoogle Scholar
  59. Tamaoki, M., Mukai, F., Asai, N., et al. (2003). Light-controlled expression of a gene encoding l-galactono-gamma-lactone dehydrogenase which affects ascorbate pool size in Arabidopsis thaliana. Plant Science, 164, 1111–1117. doi:10.1016/S0168-9452(03)00122-5.CrossRefGoogle Scholar
  60. Tiziani, S., Schwartz, S. J., & Vodovotz, Y. (2006). Profiling of carotenoids in tomato juice by one- and two-dimensional NMR. Journal of Agricultural and Food Chemistry, 54, 6094–6100. doi:10.1021/jf061154m.PubMedCrossRefGoogle Scholar
  61. Valpuesta, V., & Botella, M. A. (2004). Biosynthesis of l-ascorbic acid in plants: new pathways for an old antioxidant. Trends in Plant Science, 9, 573–577. doi:10.1016/j.tplants.2004.10.002.PubMedCrossRefGoogle Scholar
  62. Willcox, J. K., Catignani, G. L., & Lazarus, S. (2003). Tomatoes and cardiovascular health. Critical Reviews in Food Science and Nutrition, 43, 1–18. doi:10.1080/10408690390826437.PubMedCrossRefGoogle Scholar
  63. Wolucka, B. A., & van Montagu, M. (2007). The VTC2 cycle and the de novo biosynthesis pathways for vitamin C in plants: An opinion. Phytochemistry, 68, 2602–2613. doi:10.1016/j.phytochem.2007.08.034.PubMedCrossRefGoogle Scholar
  64. Zeisel, S. H. (2000). Choline: An essential nutrient for humans. Nutrition, 16, 669–671. doi:10.1016/S0899-9007(00)00349-X.PubMedCrossRefGoogle Scholar
  65. Zeisel, S. H., Mar, M., Howe, J. C., & Holden, J. M. (2003). Concentrations of choline-containing compounds and betaine in common foods. The Journal of Nutrition, 133, 1302–1307.PubMedGoogle Scholar
  66. Zekki, H., Gauthier, L., & Gosselin, A. (1996). Growth, productivity, and mineral composition of hydroponically cultivated greenhouse tomatoes, with and without nutrient solution recycling. Journal of the American Society for Horticultural Science, 121, 1082–1088. http://journal.ashspublications.org/cgi/gca?allch=&SEARCHID=1&FULLTEXT=gosselin&VOLUME=121&ISSUE=6&FIRSTINDEX=0&hits=10&RESULTFORMAT=&gca=jashs%3B121%2F6%2F1082.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Catherine Deborde
    • 1
    • 2
  • Mickaël Maucourt
    • 2
    • 3
  • Pierre Baldet
    • 1
  • Stéphane Bernillon
    • 1
    • 2
  • Benoît Biais
    • 1
    • 2
  • Gilles Talon
    • 4
  • Carine Ferrand
    • 5
  • Daniel Jacob
    • 6
    • 7
  • Hélène Ferry-Dumazet
    • 6
  • Antoine de Daruvar
    • 6
    • 8
    • 9
  • Dominique Rolin
    • 3
  • Annick Moing
    • 1
  1. 1.INRA, UMR619 Biologie du Fruit, IFR103 BVIVillenave d’OrnonFrance
  2. 2.Plateforme Métabolome-Fluxome de Génomique Fonctionnelle Bordeaux, IFR103 BVIVillenave d’OrnonFrance
  3. 3.Université de Bordeaux, UMR619 Biologie du FruitVillenave d’OrnonFrance
  4. 4.Hortis AquitaineSainte LivradeFrance
  5. 5.Département Universitaire des Sciences d’AgenUniversité de BordeauxAgenFrance
  6. 6.Université de Bordeaux, Centre de Bioinformatique de Bordeaux – Génomique Fonctionnelle BordeauxBordeauxFrance
  7. 7.INRA, UMA1251, IFR103 BVIVillenave d’OrnonFrance
  8. 8.Université de Bordeaux, UMR 5800 Laboratoire Bordelais de Recherche en InformatiqueTalenceFrance
  9. 9.CNRS, UMR 5800 Laboratoire Bordelais de Recherche en InformatiqueTalenceFrance

Personalised recommendations