Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Responses of the pea (Pisum sativum L.) leaf metabolome to drought stress assessed by nuclear magnetic resonance spectroscopy

  • 941 Accesses

  • 68 Citations

Abstract

While many compounds have been reported to change in laboratory based drought-stress experiments, little is known about how such compounds change, and are significant, under field conditions. The Pisum sativum L. (pea) leaf metabolome has been profiled, using 1D and 2D NMR spectroscopy, to monitor the changes induced by drought-stress, under both glasshouse and simulated field conditions. Significant changes in resonances were attributed to a range of compounds, identified as both primary and secondary metabolites, highlighting metabolic pathways that are stress-responsive. Importantly, these effects were largely consistent among different experiments with highly diverse conditions. The metabolites that were present at significantly higher concentrations in drought-stressed plants under all growth conditions included proline, valine, threonine, homoserine, myoinositol, γ-aminobutyrate (GABA) and trigonelline (nicotinic acid betaine). Metabolites that were altered in relative amounts in different experiments, but not specifically associated with drought-stress, were also identified. These included glutamate, asparagine and malate, with the last being present at up to 5-fold higher concentrations in plants grown in field experiments. Such changes may be expected to impact both on plant performance and crop end-use.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Almeida, A. M., Villalobos, E., Aráujo, S. S., et al. (2005). Transformation of tobacco with an Arabidopsis thaliana gene involved in trehalose biosynthesis increases tolerance to several abiotic stresses. Euphytica, 146, 165–176. doi:10.1007/s10681-005-7080-0.

  2. Asada, K. (1999). The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 601–639. doi:10.1146/annurev.arplant.50.1.601.

  3. Baker, J. M., Hawkins, N. D., Ward, J. L., et al. (2006). A metabolomic study of substantial equivalence of field-grown genetically modified wheat. Plant Biotechnology Journal, 4, 381–392. doi:10.1111/j.1467-7652.2006.00197.x.

  4. Bax, A., & Davis, D. G. (1985). MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. Journal of Magnetic Resonance (San Diego, Calif.), 65, 355–360.

  5. Belton, P. S., & Ratcliffe, R. G. (1985). NMR and compartmentation in biological tissues. Progress in Nuclear Magnetic Resonance Spectroscopy, 17, 241–279. doi:10.1016/0079-6565(85)80010-8.

  6. Bialczyk, J., & Lechowski, Z. (1995). Chemical composition of xylem sap of tomato grown on bicarbonate containing medium. Journal of Plant Nutrition, 18, 2005–2021.

  7. Bodenhausen, G., & Ruben, D. J. (1980). Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chemical Physics Letters, 69, 185–189. doi:10.1016/0009-2614(80)80041-8.

  8. Boyer, J. S. (1970). Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiology, 46, 233–235.

  9. Buckley, T. N. (2005). The control of stomata by water balance. The New Phytologist, 168, 275–292. doi:10.1111/j.1469-8137.2005.01543.x.

  10. Charlton, A., Allnutt, T., Holmes, S., et al. (2004). NMR profiling of transgenic peas. Plant Biotechnology Journal, 2, 27–36. doi:10.1046/j.1467-7652.2003.00045.x.

  11. Cornic, G., & Fresneau, C. (2002). Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. Annals of Botany, 89, 887–894. doi:10.1093/aob/mcf064.

  12. Correia, M. J., Rodrigues, M. L., Ferreira, M. I., & Pereira, J. S. (1997). Diurnal change in the relationship between stomatal conductance and abscisic acid in the xylem sap of field-grown peach trees. Journal of Experimental Botany, 48, 1727–1736.

  13. Davies, W., Wilkinson, S., & Loveys, B. R. (2002). Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture. The New Phytologist, 153, 449–460. doi:10.1046/j.0028-646X.2001.00345.x.

  14. Davis, R. A., Charlton, A. J., Godward, J., Jones, S. A., Harrison, M., & Wilson, J. C. (2007). Adaptive binning: An improved binning method for metabolomics data using the undecimated wavelet transform. Chemometrics and Intelligent Laboratory Systems, 85, 144–154. doi:10.1016/j.chemolab.2006.08.014.

  15. de Sousa-Majer, M. J., Turner, N. C., Hardie, D. C., Morton, R. L., Lamont, B., & Higgins, T. J. V. (2004). Response to water deficit and high temperature of transgenic peas (Pisum sativum L.) containing a seed-specific α-amylase inhibitor and the subsequent effects on pea weevil (Bruchus pisorum L.) survival. Journal of Experimental Botany, 55, 497–505. doi:10.1093/jxb/erh037.

  16. Defernez, M., Gunning, Y. M., Parr, A. J., Shepherd, L. V. T., Davies, H. V., & Colquhoun, I. J. (2004). NMR and HPLC-UV profiling of potatoes with genetic modifications to metabolic pathways. Journal of Agricultural and Food Chemistry, 52, 6075–6085. doi:10.1021/jf049522e.

  17. Fan, W. M. T. (1996). Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Progress in Nuclear Magnetic Resonance Spectroscopy, 28, 161–219.

  18. Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157–1161. doi:10.1038/81137.

  19. Fitz-Gerald, J. N., Lehti-Shiu, M. D., Ingram, P. A., Deak, K. I., Biesiada, T., & Malamy, J. E. (2006). Identification of quantitative trait loci that regulate Arabidopsis root system size and plasticity. Genetics, 172, 485–498. doi:10.1534/genetics.105.047555.

  20. Forster, B. P., Ellis, R. P., Moir, J., et al. (2004). Genotype and phenotype associations with drought tolerance in barley tested in North Africa. The Annals of Applied Biology, 144, 157–168. doi:10.1111/j.1744-7348.2004.tb00329.x.

  21. Harris, K., Subudhi, P. K., Borrell, A., et al. (2007). Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. Journal of Experimental Botany, 58, 327–338. doi:10.1093/jxb/erl225.

  22. Hura, T., Grzesiak, T., Hura, K., Thiemt, E., Tokarz, K., & Wedzony, M. (2007). Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter Triticale: Accumulation of ferulic acid correlates with drought tolerance. Annals of Botany, 100, 767–775. doi:10.1093/aob/mcm162.

  23. Karim, S., Aronsson, H., Ericson, H., et al. (2007). Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Molecular Biology, 64, 371–386. doi:10.1007/s11103-007-9159-6.

  24. Kirschenlohr, H. L., Griffin, J. L., Clarke, S. C., et al. (2006). Proton NMR analysis of plasma is a weak predictor of coronary artery disease. Nature Medicine, 12, 705–710. doi:10.1038/nm1432.

  25. Kranner, I., Beckett, R. P., Wornik, S., Zorn, M., & Pfeifhofer, H. W. (2002). Revival of a resurrection plant correlates with its antioxidant status. The Plant Journal, 31, 13–24. doi:10.1046/j.1365-313X.2002.01329.x.

  26. Larmure, A., Salon, C., & Munier-Jolain, N. G. (2005). How does temperature affect C and N allocation to the seeds during the seed-filling period in pea? Effect on seed nitrogen concentration. Functional Plant Biology, 32, 1009–1017. doi:10.1071/FP05154.

  27. Lawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment, 25, 275–294. doi:10.1046/j.0016-8025.2001.00814.x.

  28. Lefi, E., Gulías, J., Cifre, J., Ben-Younes, M., & Medrano, H. (2004). Drought effects on the dynamics of leaf production and senescence in field-grown Medicago arborea and Medicago citrina. The Annals of Applied Biology, 144, 169–176. doi:10.1111/j.1744-7348.2004.tb00330.x.

  29. Liu, F., Shahnazari, A., Andersen, M. N., Jacobsen, S. E., & Jensen, C. R. (2006). Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying: ABA signalling, leaf gas exchange, and water use efficiency. Journal of Experimental Botany, 57, 3727–3735. doi:10.1093/jxb/erl131.

  30. Maroco, J. P., Rodrigues, M. L., Lopes, C., & Chaves, M. M. (2002). Limitations to leaf photosynthesis in field-grown grapevine under drought - metabolic and modelling approaches. Functional Plant Biology, 29, 451–459. doi:10.1071/PP01040.

  31. McKay, J. K., Richards, J. H., & Mitchell-Olds, T. (2003). Genetics of drought adaptation in Arabidopsis thaliana. Pleiotropy contributes to genetic correlations among ecological traits. Molecular Ecology, 12, 1137–1151. doi:10.1046/j.1365-294X.2003.01833.x.

  32. Messerli, G., Nia, V. P., Trevisan, M., et al. (2007). Rapid classification of phenotypic mutants of Arabidopsis via metabolite fingerprinting. Plant Physiology, 143, 1484–1492. doi:10.1104/pp.106.090795.

  33. Moore, G. R., Ratcliffe, R. G., & Williams, R. J. P. (1983). NMR and the biochemist. Essays in Biochemistry, 19, 142–195.

  34. Morison, J. I. L., Baker, N. R., Mullineaux, P. M., & Davies, W. J. (2008). Improving water use in crop production. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 363, 639–658. doi:10.1098/rstb.2007.2175.

  35. Munné-Bosch, S., & Allegre, L. (2004). Dies and let live: Leaf senescence contributes to plant survival under drought stress. Functional Plant Biology, 31, 203–216. doi:10.1071/FP03236.

  36. Munné-Bosch, S., & Lalueza, P. (2007). Age-related changes in oxidative stress markers and abscisic acid levels in a drought-tolerant shrub, Cistus clusii grown under Mediterranean Weld conditions. Planta, 225, 1039–1049. doi:10.1007/s00425-006-0412-z.

  37. Munné-Bosch, S., López-Carbonella, M., Alegrea, L., & van Onckelen, H. A. (2002). Effect of drought and high solar radiation on 1-aminocyclopropane-1-carboxylic acid and abscisic acid concentrations in Rosmarinus officinalis plants. Physiologia Plantarum, 114, 380–386. doi:10.1034/j.1399-3054.2002.1140307.x.

  38. Müssig, C., Shin, G. H., & Altmann, T. (2003). Brassinosteroids promote root growth in Arabidopsis. Plant Physiology, 133, 1261–1271. doi:10.1104/pp.103.028662.

  39. Nakamura, S. I., Akiyama, C., Sasaki, T., Hattori, H., & Chino, M. (2008). Effect of cadmium on the chemical composition of xylem exudate from oilseed rape plants (Brassica napus L.). Soil Science and Plant Nutrition, 54, 118–127.

  40. Parry, M. A. J., Flexas, J., & Medrano, H. (2005). Prospects for crop production under drought: Research priorities and future directions. The Annals of Applied Biology, 147, 211–226. doi:10.1111/j.1744-7348.2005.00032.x.

  41. Patonnier, M. P., Peltier, J. P., & Marigo, G. (1999). Drought-induced increase in xylem malate and mannitol concentrations and closure of Fraxinus excelsior L. stomata. Journal of Experimental Botany, 50, 1223–1229. doi:10.1093/jexbot/50.336.1223.

  42. Pelleschi, S., Leonardi, A., Rocher, J. P., et al. (2006). Analysis of the relationships between growth, photosynthesis and carbohydrate metabolism using quantitative trait loci (QTLs) in young maize plants subjected to water deprivation. Molecular Breeding, 17, 21–39. doi:10.1007/s11032-005-1031-2.

  43. Quan, R., Shang, M., Zhang, H., Zhao, Y., & Zhang, J. (2004). Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnology Journal, 2, 477–486. doi:10.1111/j.1467-7652.2004.00093.x.

  44. Radchuk, R., Radchuk, V., Gotz, K. P., et al. (2007). Ectopic expression of phosphoenolpyruvate carboxylase in Vicia narbonensis seeds: Effects of improved nutrient status on seed maturation and transcriptional regulatory networks. The Plant Journal, 51, 819–839. doi:10.1111/j.1365-313X.2007.03196.x.

  45. Ratcliffe, R. G. (1987). Application of nuclear magnetic resonance methods to plant tissues. Methods in Enzymology, 148, 683–700. doi:10.1016/0076-6879(87)48065-8.

  46. Sanguinetti, M. C., Tuberosa, R., Landi, P., et al. (1999). QTL analysis of drought-related traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize. Journal of Experimental Botany, 50, 1289–1297. doi:10.1093/jexbot/50.337.1289.

  47. Scheibe, R. (2004). Malate valves to balance cellular energy supply. Physiologia Plantarum, 120, 21–26. doi:10.1111/j.0031-9317.2004.0222.x.

  48. Schiltz, S., Munier-Jolain, N., Jeudy, C., Burstin, J., & Salon, C. (2005). Dynamics of exogenous nitrogen partitioning and nitrogen remobilization from vegetative organs in pea revealed by 15N in vivo labelling throughout seed filling. Plant Physiology, 137, 1463–1473. doi:10.1104/pp.104.056713.

  49. Schrader, S. M., Kleinbeck, K. R., & Sharkey, T. D. (2007). Rapid heating of intact leaves reveals initial effects of stromal oxidation on photosynthesis. Plant, Cell & Environment, 30, 671–678. doi:10.1111/j.1365-3040.2007.01657.x.

  50. Sharp, R. E. (2002). Interaction with ethylene: Changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant, Cell & Environment, 25, 211–222. doi:10.1046/j.1365-3040.2002.00798.x.

  51. Shen, B., Jensen, R. G., & Bohnert, H. J. (1997). Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiology, 113, 1177–1183. doi:10.1104/pp.113.4.1177.

  52. Srivalli, B., Sharma, G., & Khanna-Chopra, R. (2003). Antioxidative defense system in an upland rice cultivar subjected to increasing intensity of water stress followed by recovery. Physiologia Plantarum, 119, 503–512. doi:10.1046/j.1399-3054.2003.00125.x.

  53. Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221. doi:10.1007/s11306-007-0082-2.

  54. Trouverie, J., Thévenot, C., Rocher, J. P., Sotta, B., & Prioul, J. L. (2003). The role of abscisic acid in the response of a specific vacuolar invertase to water stress in the adult maize leaf. Journal of Experimental Botany, 54, 2177–2186. doi:10.1093/jxb/erg234.

  55. Verslues, P. E., Kim, Y. S., & Zhu, J. K. (2007). Altered ABA, proline and hydrogen peroxide in an Arabidopsis glutamate:glyoxylate aminotransferase mutant. Plant Molecular Biology, 64, 205–217. doi:10.1007/s11103-007-9145-z.

  56. Vigeolas, H., Chinoy, C., Zuther, E., Blessington, B., Geigenberger, P., & Domoney, C. (2008). Combined metabolomic and genetic approaches reveal a link between the polyamine pathway and albumin 2 in developing pea seeds. Plant Physiology, 146, 74–82. doi:10.1104/pp.107.111369.

  57. Villadsen, D., Rung, J. H., & Nielsen, T. H. (2005). Osmotic stress changes carbohydrate partitioning and fructose-2,6-bisphosphate metabolism in barley leaves. Functional Plant Biology, 32, 1033–1043. doi:10.1071/FP05102.

  58. Welham, T., & Domoney, C. (2000). Temporal and spatial activity of a promoter from a pea enzyme inhibitor gene and its exploitation for seed quality improvement. Plant Science, 159, 289–299. doi:10.1016/S0168-9452(00)00358-7.

  59. Weljie, A. M., Newton, J., Mercier, P., Carlson, E., & Slupsky, C. M. (2006). Targeted profiling: Quantitative analysis of 1H NMR metabolomics data. Analytical Chemistry, 78, 4430–4442. doi:10.1021/ac060209g.

  60. Young, T. E., Meeley, R. B., & Gallie, D. R. (2004). ACC synthase expression regulates leaf performance and drought tolerance in maize. The Plant Journal, 40, 813–825. doi:10.1111/j.1365-313X.2004.02255.x.

  61. Zhang, J. X., Nguyen, H. T., & Blum, A. (1999). Genetic analysis of osmotic adjustment in crop plants. Journal of Experimental Botany, 50, 291–302. doi:10.1093/jexbot/50.332.291.

  62. Zheng, X. Q., Hayashibe, E., & Ashihara, H. (2005). Changes in trigonelline (N-methylnicotinic acid) content and nicotinic acid metabolism during germination of mungbean (Phaseolus aureus) seeds. Journal of Experimental Botany, 56, 1615–1623. doi:10.1093/jxb/eri156.

Download references

Acknowledgements

We are very grateful to Marie Bowen and Alison Wheal, John Innes Centre, for consistent and dedicated help with monitoring and harvesting plants and documentation of data. The field experiments involving transgenic plants were carried out under Defra consent 03/R29/4. Parts of the work were supported by Defra, United Kingdom (Grant Nos. AR0105 and AR0711, the Pulse Crop Genetic Improvement Network) and by the European Union (Grain Legumes Integrated Project, a Framework Programme 6 project, Grant No. FOOD-CT-2004-506223).

Author information

Correspondence to Adrian J. Charlton.

Electronic supplementary material

Below is the link to the electronic supplementary material

MOESM1 (PDF 579 KB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Charlton, A.J., Donarski, J.A., Harrison, M. et al. Responses of the pea (Pisum sativum L.) leaf metabolome to drought stress assessed by nuclear magnetic resonance spectroscopy. Metabolomics 4, 312 (2008). https://doi.org/10.1007/s11306-008-0128-0

Download citation

Keywords

  • Pea leaf metabolome
  • Drought-stress
  • NMR spectroscopy