, 4:312 | Cite as

Responses of the pea (Pisum sativum L.) leaf metabolome to drought stress assessed by nuclear magnetic resonance spectroscopy

  • Adrian J. Charlton
  • James A. Donarski
  • Mark Harrison
  • Stephen A. Jones
  • John Godward
  • Sarah Oehlschlager
  • Juan L. Arques
  • Mike Ambrose
  • Catherine Chinoy
  • Philip M. Mullineaux
  • Claire Domoney
Original Article


While many compounds have been reported to change in laboratory based drought-stress experiments, little is known about how such compounds change, and are significant, under field conditions. The Pisum sativum L. (pea) leaf metabolome has been profiled, using 1D and 2D NMR spectroscopy, to monitor the changes induced by drought-stress, under both glasshouse and simulated field conditions. Significant changes in resonances were attributed to a range of compounds, identified as both primary and secondary metabolites, highlighting metabolic pathways that are stress-responsive. Importantly, these effects were largely consistent among different experiments with highly diverse conditions. The metabolites that were present at significantly higher concentrations in drought-stressed plants under all growth conditions included proline, valine, threonine, homoserine, myoinositol, γ-aminobutyrate (GABA) and trigonelline (nicotinic acid betaine). Metabolites that were altered in relative amounts in different experiments, but not specifically associated with drought-stress, were also identified. These included glutamate, asparagine and malate, with the last being present at up to 5-fold higher concentrations in plants grown in field experiments. Such changes may be expected to impact both on plant performance and crop end-use.


Pea leaf metabolome Drought-stress NMR spectroscopy 



We are very grateful to Marie Bowen and Alison Wheal, John Innes Centre, for consistent and dedicated help with monitoring and harvesting plants and documentation of data. The field experiments involving transgenic plants were carried out under Defra consent 03/R29/4. Parts of the work were supported by Defra, United Kingdom (Grant Nos. AR0105 and AR0711, the Pulse Crop Genetic Improvement Network) and by the European Union (Grain Legumes Integrated Project, a Framework Programme 6 project, Grant No. FOOD-CT-2004-506223).

Supplementary material

11306_2008_128_MOESM1_ESM.pdf (578 kb)


  1. Almeida, A. M., Villalobos, E., Aráujo, S. S., et al. (2005). Transformation of tobacco with an Arabidopsis thaliana gene involved in trehalose biosynthesis increases tolerance to several abiotic stresses. Euphytica, 146, 165–176. doi: 10.1007/s10681-005-7080-0.CrossRefGoogle Scholar
  2. Asada, K. (1999). The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 601–639. doi: 10.1146/annurev.arplant.50.1.601.PubMedCrossRefGoogle Scholar
  3. Baker, J. M., Hawkins, N. D., Ward, J. L., et al. (2006). A metabolomic study of substantial equivalence of field-grown genetically modified wheat. Plant Biotechnology Journal, 4, 381–392. doi: 10.1111/j.1467-7652.2006.00197.x.PubMedCrossRefGoogle Scholar
  4. Bax, A., & Davis, D. G. (1985). MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. Journal of Magnetic Resonance (San Diego, Calif.), 65, 355–360.Google Scholar
  5. Belton, P. S., & Ratcliffe, R. G. (1985). NMR and compartmentation in biological tissues. Progress in Nuclear Magnetic Resonance Spectroscopy, 17, 241–279. doi: 10.1016/0079-6565(85)80010-8.CrossRefGoogle Scholar
  6. Bialczyk, J., & Lechowski, Z. (1995). Chemical composition of xylem sap of tomato grown on bicarbonate containing medium. Journal of Plant Nutrition, 18, 2005–2021.Google Scholar
  7. Bodenhausen, G., & Ruben, D. J. (1980). Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chemical Physics Letters, 69, 185–189. doi: 10.1016/0009-2614(80)80041-8.CrossRefGoogle Scholar
  8. Boyer, J. S. (1970). Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiology, 46, 233–235.PubMedCrossRefGoogle Scholar
  9. Buckley, T. N. (2005). The control of stomata by water balance. The New Phytologist, 168, 275–292. doi: 10.1111/j.1469-8137.2005.01543.x.PubMedCrossRefGoogle Scholar
  10. Charlton, A., Allnutt, T., Holmes, S., et al. (2004). NMR profiling of transgenic peas. Plant Biotechnology Journal, 2, 27–36. doi: 10.1046/j.1467-7652.2003.00045.x.PubMedCrossRefGoogle Scholar
  11. Cornic, G., & Fresneau, C. (2002). Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. Annals of Botany, 89, 887–894. doi: 10.1093/aob/mcf064.PubMedCrossRefGoogle Scholar
  12. Correia, M. J., Rodrigues, M. L., Ferreira, M. I., & Pereira, J. S. (1997). Diurnal change in the relationship between stomatal conductance and abscisic acid in the xylem sap of field-grown peach trees. Journal of Experimental Botany, 48, 1727–1736.Google Scholar
  13. Davies, W., Wilkinson, S., & Loveys, B. R. (2002). Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture. The New Phytologist, 153, 449–460. doi: 10.1046/j.0028-646X.2001.00345.x.CrossRefGoogle Scholar
  14. Davis, R. A., Charlton, A. J., Godward, J., Jones, S. A., Harrison, M., & Wilson, J. C. (2007). Adaptive binning: An improved binning method for metabolomics data using the undecimated wavelet transform. Chemometrics and Intelligent Laboratory Systems, 85, 144–154. doi: 10.1016/j.chemolab.2006.08.014.CrossRefGoogle Scholar
  15. de Sousa-Majer, M. J., Turner, N. C., Hardie, D. C., Morton, R. L., Lamont, B., & Higgins, T. J. V. (2004). Response to water deficit and high temperature of transgenic peas (Pisum sativum L.) containing a seed-specific α-amylase inhibitor and the subsequent effects on pea weevil (Bruchus pisorum L.) survival. Journal of Experimental Botany, 55, 497–505. doi: 10.1093/jxb/erh037.PubMedCrossRefGoogle Scholar
  16. Defernez, M., Gunning, Y. M., Parr, A. J., Shepherd, L. V. T., Davies, H. V., & Colquhoun, I. J. (2004). NMR and HPLC-UV profiling of potatoes with genetic modifications to metabolic pathways. Journal of Agricultural and Food Chemistry, 52, 6075–6085. doi: 10.1021/jf049522e.PubMedCrossRefGoogle Scholar
  17. Fan, W. M. T. (1996). Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Progress in Nuclear Magnetic Resonance Spectroscopy, 28, 161–219.Google Scholar
  18. Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157–1161. doi: 10.1038/81137.PubMedCrossRefGoogle Scholar
  19. Fitz-Gerald, J. N., Lehti-Shiu, M. D., Ingram, P. A., Deak, K. I., Biesiada, T., & Malamy, J. E. (2006). Identification of quantitative trait loci that regulate Arabidopsis root system size and plasticity. Genetics, 172, 485–498. doi: 10.1534/genetics.105.047555.PubMedCrossRefGoogle Scholar
  20. Forster, B. P., Ellis, R. P., Moir, J., et al. (2004). Genotype and phenotype associations with drought tolerance in barley tested in North Africa. The Annals of Applied Biology, 144, 157–168. doi: 10.1111/j.1744-7348.2004.tb00329.x.CrossRefGoogle Scholar
  21. Harris, K., Subudhi, P. K., Borrell, A., et al. (2007). Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. Journal of Experimental Botany, 58, 327–338. doi: 10.1093/jxb/erl225.PubMedCrossRefGoogle Scholar
  22. Hura, T., Grzesiak, T., Hura, K., Thiemt, E., Tokarz, K., & Wedzony, M. (2007). Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter Triticale: Accumulation of ferulic acid correlates with drought tolerance. Annals of Botany, 100, 767–775. doi: 10.1093/aob/mcm162.PubMedCrossRefGoogle Scholar
  23. Karim, S., Aronsson, H., Ericson, H., et al. (2007). Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Molecular Biology, 64, 371–386. doi: 10.1007/s11103-007-9159-6.PubMedCrossRefGoogle Scholar
  24. Kirschenlohr, H. L., Griffin, J. L., Clarke, S. C., et al. (2006). Proton NMR analysis of plasma is a weak predictor of coronary artery disease. Nature Medicine, 12, 705–710. doi: 10.1038/nm1432.PubMedCrossRefGoogle Scholar
  25. Kranner, I., Beckett, R. P., Wornik, S., Zorn, M., & Pfeifhofer, H. W. (2002). Revival of a resurrection plant correlates with its antioxidant status. The Plant Journal, 31, 13–24. doi: 10.1046/j.1365-313X.2002.01329.x.PubMedCrossRefGoogle Scholar
  26. Larmure, A., Salon, C., & Munier-Jolain, N. G. (2005). How does temperature affect C and N allocation to the seeds during the seed-filling period in pea? Effect on seed nitrogen concentration. Functional Plant Biology, 32, 1009–1017. doi: 10.1071/FP05154.CrossRefGoogle Scholar
  27. Lawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment, 25, 275–294. doi: 10.1046/j.0016-8025.2001.00814.x.CrossRefGoogle Scholar
  28. Lefi, E., Gulías, J., Cifre, J., Ben-Younes, M., & Medrano, H. (2004). Drought effects on the dynamics of leaf production and senescence in field-grown Medicago arborea and Medicago citrina. The Annals of Applied Biology, 144, 169–176. doi: 10.1111/j.1744-7348.2004.tb00330.x.CrossRefGoogle Scholar
  29. Liu, F., Shahnazari, A., Andersen, M. N., Jacobsen, S. E., & Jensen, C. R. (2006). Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying: ABA signalling, leaf gas exchange, and water use efficiency. Journal of Experimental Botany, 57, 3727–3735. doi: 10.1093/jxb/erl131.PubMedCrossRefGoogle Scholar
  30. Maroco, J. P., Rodrigues, M. L., Lopes, C., & Chaves, M. M. (2002). Limitations to leaf photosynthesis in field-grown grapevine under drought - metabolic and modelling approaches. Functional Plant Biology, 29, 451–459. doi: 10.1071/PP01040.CrossRefGoogle Scholar
  31. McKay, J. K., Richards, J. H., & Mitchell-Olds, T. (2003). Genetics of drought adaptation in Arabidopsis thaliana. Pleiotropy contributes to genetic correlations among ecological traits. Molecular Ecology, 12, 1137–1151. doi: 10.1046/j.1365-294X.2003.01833.x.PubMedCrossRefGoogle Scholar
  32. Messerli, G., Nia, V. P., Trevisan, M., et al. (2007). Rapid classification of phenotypic mutants of Arabidopsis via metabolite fingerprinting. Plant Physiology, 143, 1484–1492. doi: 10.1104/pp.106.090795.PubMedCrossRefGoogle Scholar
  33. Moore, G. R., Ratcliffe, R. G., & Williams, R. J. P. (1983). NMR and the biochemist. Essays in Biochemistry, 19, 142–195.PubMedGoogle Scholar
  34. Morison, J. I. L., Baker, N. R., Mullineaux, P. M., & Davies, W. J. (2008). Improving water use in crop production. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 363, 639–658. doi: 10.1098/rstb.2007.2175.PubMedCrossRefGoogle Scholar
  35. Munné-Bosch, S., & Allegre, L. (2004). Dies and let live: Leaf senescence contributes to plant survival under drought stress. Functional Plant Biology, 31, 203–216. doi: 10.1071/FP03236.CrossRefGoogle Scholar
  36. Munné-Bosch, S., & Lalueza, P. (2007). Age-related changes in oxidative stress markers and abscisic acid levels in a drought-tolerant shrub, Cistus clusii grown under Mediterranean Weld conditions. Planta, 225, 1039–1049. doi: 10.1007/s00425-006-0412-z.PubMedCrossRefGoogle Scholar
  37. Munné-Bosch, S., López-Carbonella, M., Alegrea, L., & van Onckelen, H. A. (2002). Effect of drought and high solar radiation on 1-aminocyclopropane-1-carboxylic acid and abscisic acid concentrations in Rosmarinus officinalis plants. Physiologia Plantarum, 114, 380–386. doi: 10.1034/j.1399-3054.2002.1140307.x.PubMedCrossRefGoogle Scholar
  38. Müssig, C., Shin, G. H., & Altmann, T. (2003). Brassinosteroids promote root growth in Arabidopsis. Plant Physiology, 133, 1261–1271. doi: 10.1104/pp.103.028662.PubMedCrossRefGoogle Scholar
  39. Nakamura, S. I., Akiyama, C., Sasaki, T., Hattori, H., & Chino, M. (2008). Effect of cadmium on the chemical composition of xylem exudate from oilseed rape plants (Brassica napus L.). Soil Science and Plant Nutrition, 54, 118–127.Google Scholar
  40. Parry, M. A. J., Flexas, J., & Medrano, H. (2005). Prospects for crop production under drought: Research priorities and future directions. The Annals of Applied Biology, 147, 211–226. doi: 10.1111/j.1744-7348.2005.00032.x.CrossRefGoogle Scholar
  41. Patonnier, M. P., Peltier, J. P., & Marigo, G. (1999). Drought-induced increase in xylem malate and mannitol concentrations and closure of Fraxinus excelsior L. stomata. Journal of Experimental Botany, 50, 1223–1229. doi: 10.1093/jexbot/50.336.1223.CrossRefGoogle Scholar
  42. Pelleschi, S., Leonardi, A., Rocher, J. P., et al. (2006). Analysis of the relationships between growth, photosynthesis and carbohydrate metabolism using quantitative trait loci (QTLs) in young maize plants subjected to water deprivation. Molecular Breeding, 17, 21–39. doi: 10.1007/s11032-005-1031-2.CrossRefGoogle Scholar
  43. Quan, R., Shang, M., Zhang, H., Zhao, Y., & Zhang, J. (2004). Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnology Journal, 2, 477–486. doi: 10.1111/j.1467-7652.2004.00093.x.Google Scholar
  44. Radchuk, R., Radchuk, V., Gotz, K. P., et al. (2007). Ectopic expression of phosphoenolpyruvate carboxylase in Vicia narbonensis seeds: Effects of improved nutrient status on seed maturation and transcriptional regulatory networks. The Plant Journal, 51, 819–839. doi: 10.1111/j.1365-313X.2007.03196.x.PubMedCrossRefGoogle Scholar
  45. Ratcliffe, R. G. (1987). Application of nuclear magnetic resonance methods to plant tissues. Methods in Enzymology, 148, 683–700. doi: 10.1016/0076-6879(87)48065-8.CrossRefGoogle Scholar
  46. Sanguinetti, M. C., Tuberosa, R., Landi, P., et al. (1999). QTL analysis of drought-related traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize. Journal of Experimental Botany, 50, 1289–1297. doi: 10.1093/jexbot/50.337.1289.CrossRefGoogle Scholar
  47. Scheibe, R. (2004). Malate valves to balance cellular energy supply. Physiologia Plantarum, 120, 21–26. doi: 10.1111/j.0031-9317.2004.0222.x.PubMedCrossRefGoogle Scholar
  48. Schiltz, S., Munier-Jolain, N., Jeudy, C., Burstin, J., & Salon, C. (2005). Dynamics of exogenous nitrogen partitioning and nitrogen remobilization from vegetative organs in pea revealed by 15N in vivo labelling throughout seed filling. Plant Physiology, 137, 1463–1473. doi: 10.1104/pp.104.056713.PubMedCrossRefGoogle Scholar
  49. Schrader, S. M., Kleinbeck, K. R., & Sharkey, T. D. (2007). Rapid heating of intact leaves reveals initial effects of stromal oxidation on photosynthesis. Plant, Cell & Environment, 30, 671–678. doi: 10.1111/j.1365-3040.2007.01657.x.CrossRefGoogle Scholar
  50. Sharp, R. E. (2002). Interaction with ethylene: Changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant, Cell & Environment, 25, 211–222. doi: 10.1046/j.1365-3040.2002.00798.x.CrossRefGoogle Scholar
  51. Shen, B., Jensen, R. G., & Bohnert, H. J. (1997). Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiology, 113, 1177–1183. doi: 10.1104/pp.113.4.1177.PubMedCrossRefGoogle Scholar
  52. Srivalli, B., Sharma, G., & Khanna-Chopra, R. (2003). Antioxidative defense system in an upland rice cultivar subjected to increasing intensity of water stress followed by recovery. Physiologia Plantarum, 119, 503–512. doi: 10.1046/j.1399-3054.2003.00125.x.CrossRefGoogle Scholar
  53. Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221. doi: 10.1007/s11306-007-0082-2.CrossRefGoogle Scholar
  54. Trouverie, J., Thévenot, C., Rocher, J. P., Sotta, B., & Prioul, J. L. (2003). The role of abscisic acid in the response of a specific vacuolar invertase to water stress in the adult maize leaf. Journal of Experimental Botany, 54, 2177–2186. doi: 10.1093/jxb/erg234.PubMedCrossRefGoogle Scholar
  55. Verslues, P. E., Kim, Y. S., & Zhu, J. K. (2007). Altered ABA, proline and hydrogen peroxide in an Arabidopsis glutamate:glyoxylate aminotransferase mutant. Plant Molecular Biology, 64, 205–217. doi: 10.1007/s11103-007-9145-z.PubMedCrossRefGoogle Scholar
  56. Vigeolas, H., Chinoy, C., Zuther, E., Blessington, B., Geigenberger, P., & Domoney, C. (2008). Combined metabolomic and genetic approaches reveal a link between the polyamine pathway and albumin 2 in developing pea seeds. Plant Physiology, 146, 74–82. doi: 10.1104/pp.107.111369.PubMedCrossRefGoogle Scholar
  57. Villadsen, D., Rung, J. H., & Nielsen, T. H. (2005). Osmotic stress changes carbohydrate partitioning and fructose-2,6-bisphosphate metabolism in barley leaves. Functional Plant Biology, 32, 1033–1043. doi: 10.1071/FP05102.CrossRefGoogle Scholar
  58. Welham, T., & Domoney, C. (2000). Temporal and spatial activity of a promoter from a pea enzyme inhibitor gene and its exploitation for seed quality improvement. Plant Science, 159, 289–299. doi: 10.1016/S0168-9452(00)00358-7.PubMedCrossRefGoogle Scholar
  59. Weljie, A. M., Newton, J., Mercier, P., Carlson, E., & Slupsky, C. M. (2006). Targeted profiling: Quantitative analysis of 1H NMR metabolomics data. Analytical Chemistry, 78, 4430–4442. doi: 10.1021/ac060209g.PubMedCrossRefGoogle Scholar
  60. Young, T. E., Meeley, R. B., & Gallie, D. R. (2004). ACC synthase expression regulates leaf performance and drought tolerance in maize. The Plant Journal, 40, 813–825. doi: 10.1111/j.1365-313X.2004.02255.x.PubMedCrossRefGoogle Scholar
  61. Zhang, J. X., Nguyen, H. T., & Blum, A. (1999). Genetic analysis of osmotic adjustment in crop plants. Journal of Experimental Botany, 50, 291–302. doi: 10.1093/jexbot/50.332.291.CrossRefGoogle Scholar
  62. Zheng, X. Q., Hayashibe, E., & Ashihara, H. (2005). Changes in trigonelline (N-methylnicotinic acid) content and nicotinic acid metabolism during germination of mungbean (Phaseolus aureus) seeds. Journal of Experimental Botany, 56, 1615–1623. doi: 10.1093/jxb/eri156.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Adrian J. Charlton
    • 1
  • James A. Donarski
    • 1
  • Mark Harrison
    • 1
  • Stephen A. Jones
    • 1
  • John Godward
    • 1
  • Sarah Oehlschlager
    • 1
  • Juan L. Arques
    • 2
  • Mike Ambrose
    • 2
  • Catherine Chinoy
    • 2
  • Philip M. Mullineaux
    • 3
  • Claire Domoney
    • 2
  1. 1.Central Science LaboratorySand Hutton, YorkUK
  2. 2.John Innes Centre, Norwich Research ParkColney, NorwichUK
  3. 3.Department of Biological SciencesUniversity of EssexWivenhoe Park, ColchesterUK

Personalised recommendations