Metabolomics

, Volume 4, Issue 3, pp 240–247

Leakage of adenylates during cold methanol/glycerol quenching of Escherichia coli

Original Article

Abstract

Effective and rapid inactivation of cellular metabolism is a prerequisite for accurate metabolome analysis. Cold methanol quenching is commonly applied to stop any metabolic activity and, at the same time remaining the cells’ integrity. However, it is reported that especially prokaryotic cells like Escherichia coli and Corynebacterium glutamicum tend to leak intracellular metabolites during cold methanol quenching. In this work leakage of adenylates is quantified for different quenching fluids. Further, a methanol/glycerol based quenching fluid is proposed, which reduces leakage drastically compared to the commonly applied methanol/water solution (16% ATP leakage compared to more than 70%).

Keywords

Quenching Cold shock Cell leakage Adenylates Glycerol 

References

  1. Al Zaid Siddiquee, K., Arauzo-Bravo, M. J., & Shimizu, K. (2004). Metabolic flux analysis of pykF gene knockout Escherichia coli based on 13C-labeling experiments together with measurements of enzyme activities and intracellular metabolite concentrations. Applied Microbiology and Biotechnology, 63, 407–417. doi:10.1007/s00253-003-1357-9.PubMedCrossRefGoogle Scholar
  2. Bolten, C. J., Kiefer, P., Letisse, F., Portais, J. C., & Wittmann, C. (2007). Sampling for metabolome analysis of microorganisms. Analytical Chemistry, 79, 3843–3849. doi:10.1021/ac0623888.PubMedCrossRefGoogle Scholar
  3. Buchholz, A., Takors, R., & Wandrey, C. (2001). Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques. Analytical Biochemistry, 295, 129–137. doi:10.1006/abio.2001.5183.PubMedCrossRefGoogle Scholar
  4. Buziol, S., Bashir, I., Baumeister, A., Claassen, W., Noisommit-Rizzi, N., Mailinger, W., et al. (2002). New bioreactor-coupled rapid stopped-flow sampling technique for measurements of metabolite dynamics on a subsecond time scale. Biotechnology and Bioengineering, 80, 632–636. doi:10.1002/bit.10427.PubMedCrossRefGoogle Scholar
  5. Faijes, M., Mars, A. E., & Smid, E. J. (2007). Comparison of quenching and extraction methodologies for metabolome analysis of Lactobacillus plantarum. Microbial Cell Factories, 6, 27. doi:10.1186/1475-2859-6-27.PubMedCrossRefGoogle Scholar
  6. Fell, D. A. (1992). Metabolic control analysis: A survey of its theoretical and experimental development. The Biochemical Journal, 286, 313–330.PubMedGoogle Scholar
  7. Hiller, J., Franco-Lara, E., Papaioannou, V., & Weuster-Botz, D. (2007). Fast sampling and quenching procedures for microbial metabolic profiling. Biotechnology Letters, 29, 1161–1167. doi:10.1007/s10529-007-9383-9.PubMedCrossRefGoogle Scholar
  8. Hoque, M. A., Ushiyama, H., Tomita, M., & Shimizu, K. (2005). Dynamic responses of the intracellular metabolite concentrations of the wild type and pykA mutant Escherichia coli against pulse addition of glucose or NH3 under those limiting continuous cultures. Biochemical Engineering Journal, 26, 38–49. doi:10.1016/j.bej.2005.05.012.CrossRefGoogle Scholar
  9. Jensen, N. B., Jokumsen, K. V., & Villadsen, J. (1999). Determination of the phosphorylated sugars of the Embden–Meyerhoff–Parnas pathway in Lactococcus lactis using a fast sampling technique and solid phase extraction. Biotechnology and Bioengineering, 63, 356–362. doi:10.1002/(SICI)1097-0290(19990505)63:3≤356::AID-BIT12≥3.0.CO;2-1.PubMedCrossRefGoogle Scholar
  10. Jenzsch, M., Gnoth, S., Beck, M., Kleinschmidt, M., Simutis, R., & Lübbert, A. (2006). Open-loop control of the biomass concentration within the growth phase of recombinant protein production processes. Journal of Biotechnology, 127, 84–94. doi:10.1016/j.jbiotec.2006.06.004.PubMedCrossRefGoogle Scholar
  11. Kacser, H., & Burns, J. A. (1973). The control of flux. Symposia of the Society for Experimental Biology, 27, 65–104.PubMedGoogle Scholar
  12. Link, H., & Weuster-Botz, D. (2007). Steady state analysis of metabolic pathways: Comparing the double modulation method and the lin-log approach. Metabolic Engineering, 9, 433–441. doi:10.1016/j.ymben.2007.07.002.PubMedCrossRefGoogle Scholar
  13. Luo, B., Groenke, K., Takors, R., Wandrey, C., & Oldiges, M. (2007). Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. Journal of Chromatography A, 1147, 153–164.PubMedCrossRefGoogle Scholar
  14. Magnus, J. B., Hollwedel, D., Oldiges, M., & Takors, R. (2006). Monitoring and modeling of the reaction dynamics in the valine/leucine synthesis pathway in Corynebacterium glutamicum. Biotechnology Progress, 22, 1071–1083. doi:10.1021/bp060072f.PubMedCrossRefGoogle Scholar
  15. Mashego, M. R., Rumbold, K., De Mey, M., Vandamme, E., Soetaert, W., & Heijnen, J. J. (2007). Microbial metabolomics: Past, present and future methodologies. Biotechnology Letters, 29, 1–16. doi:10.1007/s10529-006-9218-0.PubMedCrossRefGoogle Scholar
  16. Nasution, U., van Gulik, W. M., Kleijn, R. J., van Winden, W. A., Proell, A., & Heijnen, J. J. (2006). Measurement of intracellular metabolites of primary metabolism and adenine nucleotides in chemostat cultivated Penicillium chrysogenum. Biotechnology and Bioengineering, 94, 159–166. doi:10.1002/bit.20842.PubMedCrossRefGoogle Scholar
  17. Oldiges, M., Lütz, S., Pflug, S., Schroer, K., Stein, N., & Wiendahl, C. (2007). Metabolomics: Current state and evolving methodologies and tools. Applied Microbiology and Biotechnology, 76, 495–511. doi:10.1007/s00253-007-1029-2.PubMedCrossRefGoogle Scholar
  18. Savageau, M. (1969). Biochemical system analysis, I. Some mathematical properties of the rate law for the component enzymatic reactions. Journal of Theoretical Biology, 25, 365–369. doi:10.1016/S0022-5193(69)80026-3.PubMedCrossRefGoogle Scholar
  19. Schaefer, U., Boos, W., Takors, R., & Weuster-Botz, D. (1999). Automated sampling device for monitoring intracellular metabolite dynamics. Analytical Biochemistry, 270, 88–96. doi:10.1006/abio.1999.4048.PubMedCrossRefGoogle Scholar
  20. Schaub, J., Schiesling, C., Reuss, M., & Dauner, M. (2006). Integrated sampling procedure for metabolome analysis. Biotechnology Progress, 22, 1434–1442. doi:10.1021/bp050381q.PubMedCrossRefGoogle Scholar
  21. Takors, R., Bathe, B., Rieping, M., Hans, S., Kelle, R., & Huthmacher, K. (2007). Systems biology for industrial strains and fermentation processes–example: amino acids. Journal of Biotechnology, 129, 181–190. doi:10.1016/j.jbiotec.2007.01.031.PubMedCrossRefGoogle Scholar
  22. Vaidyanathan, S. (2005). Profiling microbial metabolomes: What do we stand to gain? Metabolomics, 1, 17–28. doi:10.1007/s11306-005-1104-6.CrossRefGoogle Scholar
  23. Vallino, J. J., & Stephanopoulos, G. (1993). Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnology and Bioengineering, 41, 633–646. doi:10.1002/bit.260410606.PubMedCrossRefGoogle Scholar
  24. Villas-Bôas, S. G., & Bruheim, P. (2007). Cold glycerol-saline: The promising quenching solution for accurate intracellular metabolite analysis of microbial cells. Analytical Biochemistry, 370, 87–97. doi:10.1016/j.ab.2007.06.028.PubMedCrossRefGoogle Scholar
  25. Visser, D., van Zuylen, G. A., van Dam, J. C., Oudshoorn, A., Eman, M. R., Ras, C., et al. (2002). Rapid sampling for analysis of in vivo kinetics using the BioScope: A system for continuous-pulse experiments. Biotechnology and Bioengineering, 79, 674–681. doi:10.1002/bit.10328.PubMedCrossRefGoogle Scholar
  26. Wang, L., & Hatzimanikatis, V. (2006). Metabolic engineering under uncertainty. I: Framework development. Metabolic Engineering, 8, 133–141. doi:10.1016/j.ymben.2005.11.003.PubMedCrossRefGoogle Scholar
  27. Weuster-Botz, D. (1997). Sampling tube device for monitoring intracellular metabolite dynamics. Analytical Biochemistry, 246, 225–233. doi:10.1006/abio.1997.2009.PubMedCrossRefGoogle Scholar
  28. Wittmann, C., Krömer, J. O., Kiefer, P., Binz, T., & Heinzle, E. (2004). Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteria. Analytical Biochemistry, 327, 135–139. doi:10.1016/j.ab.2004.01.002.PubMedCrossRefGoogle Scholar
  29. Wu, L., Wang, W., van Winden, W. A., van Gulik, W. M., & Heijnen, J. J. (2004). A new framework for the estimation of control parameters in metabolic pathways using lin-log kinetics. European Journal of Biochemistry, 271, 3348–3359. doi:10.1111/j.0014-2956.2004.04269.x.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hannes Link
    • 1
  • Bernd Anselment
    • 1
  • Dirk Weuster-Botz
    • 1
  1. 1.Lehrstuhl für BioverfahrenstechnikTechnische Universität MünchenGarchingGermany

Personalised recommendations