Metabolomics

, 4:191

Metabolomic analysis of urine and serum in Parkinson’s disease

  • Andrew W. Michell
  • David Mosedale
  • David J. Grainger
  • Roger A. Barker
Original Article

Abstract

Objective To investigate the metabolic profile of serum and urine samples from 23 female patients with Parkinson’s disease (PD) and 23 age and sex-matched controls. Methods We used gas chromatography coupled to mass spectrometry to detect metabolites (approximately 1,600 in total), then supervised statistical analysis (using projection to latent structures discriminant analysis) to study the differences between control and PD samples. Results Supervised statistical analysis yielded models that possessed statistically significant predictive value for blind samples on the basis of the metabolic profile of urine but not of serum. However, whilst no individual biomarkers were identified, suggesting that any metabolic disturbance associated with PD is comparatively minor, a multivariate metabolic signature associated with PD was identified in urine. Interpretation There is a relatively subtle, yet distinct, metabolic signature of PD present in the urine of patients with early disease. The signature may itself act as a useful biomarker for PD, although larger studies will be required to validate our present findings.

Keywords

Biomarker Metabolomics GC-MS Parkinson’s disease 

References

  1. Abdi, F., Quinn, J. F., Jankovic, J., McIntosh, M., Leverenz, J. B., Peskind, E., Nixon, R., Nutt, J., Chung, K., Zabetian, C., Samii, A., Lin, M., Hattan, S., Pan, C., Wang, Y., Jin, J., Zhu, D., Li, G. J., Liu, Y., Waichunas, D., Montine, T. J., & Zhang, J. (2006). Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. Journal of Alzheimer's Disease, 9(3), 293–348.PubMedGoogle Scholar
  2. Bohnen, N. I., Kaufer, D. I., Ivanco, L. S., Lopresti, B., Koeppe, R. A., Davis, J. G., Mathis, C. A., Moore, R. Y., & DeKosky, S. T. (2003). Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: An in vivo positron emission tomographic study. Archives of Neurology, 60, 1745–1748. doi:10.1001/archneur.60.12.1745.PubMedCrossRefGoogle Scholar
  3. Braak, H., Del Tredici, K., Rub, U., de Vos, R. A., Jansen Steur, E. N., & Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging, 24, 197–211. doi:10.1016/S0197-4580(02)00065-9.PubMedCrossRefGoogle Scholar
  4. Brindle, J. T., Antti, H., Holmes, E., Tranter, G., Nicholson, J. K., Bethell, H. W., Clarke, S., Schofield, P. M., McKilligin, E., Mosedale, D. E., & Grainger, D. J. (2002). Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nature Medicine, 8, 1439–1444. doi:10.1038/nm802.PubMedCrossRefGoogle Scholar
  5. Brindle, J. T., Nicholson, J. K., Schofield, P. M., Grainger, D. J., & Holmes, E. (2003). Application of chemometrics to 1H NMR spectroscopic data to investigate a relationship between human serum metabolic profiles and hypertension. Analyst, 128, 32–36. doi:10.1039/b209155k.PubMedCrossRefGoogle Scholar
  6. Burn, D. J., & Lees, A. J. (2002). Progressive supranuclear palsy: Where are we now? Lancet Neurology, 1, 359–369. doi:10.1016/S1474-4422(02)00161-8.PubMedCrossRefGoogle Scholar
  7. Di Monte, D. A. (2003). The environment and Parkinson’s disease: Is the nigrostriatal system preferentially targeted by neurotoxins? Lancet Neurology, 2, 531–538. doi:10.1016/S1474-4422(03)00501-5.PubMedCrossRefGoogle Scholar
  8. Dunn, W. B., Bailey, N. J., & Johnson, H. E. (2005). Measuring the metabolome: Current analytical technologies. Analyst, 130, 606–625. doi:10.1039/b418288j.PubMedCrossRefGoogle Scholar
  9. Dunne, V. G., Bhattachayya, S., Besser, M., Rae, C., & Griffin, J. L. (2005). Metabolites from cerebrospinal fluid in aneurysmal subarachnoid haemorrhage correlate with vasospasm and clinical outcome: A pattern-recognition 1H NMR study. NMR in Biomedicine, 18, 24–33. doi:10.1002/nbm.918.PubMedCrossRefGoogle Scholar
  10. Edwards, L. L., Quigley, E. M., & Pfeiffer, R. F. (1992). Gastrointestinal dysfunction in Parkinson’s disease: Frequency and pathophysiology. Neurology, 42, 726–732.PubMedGoogle Scholar
  11. Fearnley, J. M., & Lees, A. J. (1991). Ageing and Parkinson’s disease: Substantia nigra regional selectivity. Brain, 114(Pt 5), 2283–2301. doi:10.1093/brain/114.5.2283.PubMedCrossRefGoogle Scholar
  12. Foltynie, T., Brayne, C., & Barker, R. A. (2002). The heterogeneity of idiopathic Parkinson’s disease. Journal of Neurology, 249, 138–145. doi:10.1007/PL00007856.PubMedCrossRefGoogle Scholar
  13. Gavaghan, C. L., Holmes, E., Lenz, E., Wilson, I. D., & Nicholson, J. K. (2000). An NMR-based metabonomic approach to investigate the biochemical consequences of genetic strain differences: Application to the C57BL10J and Alpk:ApfCD mouse. FEBS Letters, 484, 169–174. doi:10.1016/S0014-5793(00)02147-5.PubMedCrossRefGoogle Scholar
  14. Ghauri, F. Y., Nicholson, J. K., Sweatman, B. C., Wood, J., Beddell, C. R., Lindon, J. C., & Cairns, N. J. (1993). NMR spectroscopy of human post mortem cerebrospinal fluid: Distinction of Alzheimer’s disease from control using pattern recognition and statistics. NMR in Biomedicine, 6, 163–167. doi:10.1002/nbm.1940060210.PubMedCrossRefGoogle Scholar
  15. Gibb, W. R., & Lees, A. J. (1988). The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 51, 745–752.PubMedGoogle Scholar
  16. Griffin, J. L. (2003). Metabonomics: NMR spectroscopy and pattern recognition analysis of body fluids and tissues for characterisation of xenobiotic toxicity and disease diagnosis. Current Opinion in Chemical Biology, 7, 648–654. doi:10.1016/j.cbpa.2003.08.008.PubMedCrossRefGoogle Scholar
  17. Hughes, A. J., Daniel, S. E., Ben Shlomo, Y., & Lees, A. J. (2002). The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain, 125, 861–870. doi:10.1093/brain/awf080.PubMedCrossRefGoogle Scholar
  18. Hughes, A. J., Daniel, S. E., Kilford, L., & Lees, A. J. (1992). Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. Journal of Neurology, Neurosurgery, and Psychiatry, 55, 181–184.PubMedGoogle Scholar
  19. Kirschenlohr, H. L., Griffin, J. L., Clarke, S. C., Rhydwen, R., Grace, A. A., Schofield, P. M., Brindle, K. M., & Metcalfe, J. C. (2006). Proton NMR analysis of plasma is a weak predictor of coronary artery disease. Nature Medicine, 12(6), 705–710. doi:10.1038/nm1432.PubMedCrossRefGoogle Scholar
  20. Lenz, E. M., Bright, J., Wilson, I. D., Hughes, A., Morrisson, J., Lindberg, H., & Lockton, A. (2004). Metabonomics, dietary influences and cultural differences: A 1H NMR-based study of urine samples obtained from healthy British and Swedish subjects. Journal of Pharmaceutical and Biomedical Analysis, 36, 841–849. doi:10.1016/j.jpba.2004.08.002.PubMedCrossRefGoogle Scholar
  21. Lewis, S. J., Foltynie, T., Blackwell, A. D., Robbins, T. W., Owen, A. M., & Barker, R. A. (2005). Heterogeneity of Parkinson’s disease in the early clinical stages using a data driven approach. Journal of Neurology, Neurosurgery, and Psychiatry, 76, 343–348. doi:10.1136/jnnp.2003.033530.PubMedCrossRefGoogle Scholar
  22. Lindon, J. C., Nicholson, J. K., Holmes, E., Antti, H., Bollard, M. E., Keun, H., Beckonert, O., Ebbels, T. M., Reily, M. D., Robertson, D., Stevens, G. J., Luke, P., Breau, A. P., Cantor, G. H., Bible, R. H., Niederhauser, U., Senn, H., Schlotterbeck, G., Sidelmann, U. G., Laursen, S. M., Tymiak, A., Car, B. D., Lehman-McKeeman, L., Colet, J. M., Loukaci, A., & Thomas, C. (2003). Contemporary issues in toxicology the role of metabonomics in toxicology and its evaluation by the COMET project. Toxicology and Applied Pharmacology, 187, 137–146. doi:10.1016/S0041-008X(02)00079-0.PubMedCrossRefGoogle Scholar
  23. Mauborgne, A., Javoy-Agid, F., Legrand, J. C., Agid, Y., & Cesselin, F. (1983). Decrease of substance P-like immunoreactivity in the substantia nigra and pallidum of parkinsonian brains. Brain Research, 268, 167–170. doi:10.1016/0006-8993(83)90403-1.PubMedCrossRefGoogle Scholar
  24. Mayeux, R., Chen, J., Mirabello, E., Marder, K., Bell, K., Dooneief, G., Cote, L., & Stern, Y. (1990). An estimate of the incidence of dementia in idiopathic Parkinson’s disease. Neurology, 40, 1513–1517.PubMedGoogle Scholar
  25. Michell, A. W., Lewis, S. J., Foltynie, T., & Barker, R. A. (2004). Biomarkers and Parkinson’s disease. Brain, 127, 1693–1705. doi:10.1093/brain/awh198.PubMedCrossRefGoogle Scholar
  26. Michell, A. W., Luheshi, L. M., & Barker, R. A. (2005). Skin and platelet alpha-synuclein as peripheral biomarkers of Parkinson’s disease. Neuroscience Letters, 381, 294–298. doi:10.1016/j.neulet.2005.02.030.PubMedCrossRefGoogle Scholar
  27. Mikolaenko, I., Pletnikova, O., Kawas, C. H., O’Brien, R., Resnick, S. M., Crain, B., & Troncoso, J. C. (2005). Alpha-synuclein lesions in normal aging, Parkinson disease, and Alzheimer disease: evidence from the Baltimore Longitudinal Study of Aging (BLSA). Journal of Neuropathology and Experimental Neurology, 64, 156–162.PubMedGoogle Scholar
  28. Nicholson, J. K., Connelly, J., Lindon, J. C., & Holmes, E. (2002). Metabonomics: A platform for studying drug toxicity and gene function. Nature Reviews Drug Discovery, 1, 153–161. doi:10.1038/nrd728.PubMedCrossRefGoogle Scholar
  29. Nicholson, J. K., & Wilson, I. D. (2003). Opinion: understanding ‘global’ systems biology: metabonomics and the continuum of metabolism. Nature Reviews Drug Discovery, 2, 668–676. doi:10.1038/nrd1157.PubMedCrossRefGoogle Scholar
  30. O’Hagan, S., Dunn, W. B., Brown, M., Knowles, J. D., & Kell, D. B. (2005). Closed-loop, multiobjective optimization of analytical instrumentation: gas chromatography/time-of-flight mass spectrometry of the metabolomes of human serum and of yeast fermentations. Analytical Chemistry, 77, 290–303. doi:10.1021/ac049146x.PubMedCrossRefGoogle Scholar
  31. Odunsi, K., Wollman, R. M., Ambrosone, C. B., Hutson, A., McCann, S. E., Tammela, J., Geisler, J. P., Miller, G., Sellers, T., Cliby, W., Qian, F., Keitz, B., Intengan, M., Lele, S., & Alderfer, J. L. (2005). Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics. International Journal of Cancer, 113, 782–788. doi:10.1002/ijc.20651.CrossRefGoogle Scholar
  32. Olanow, C. W., & Tatton, W. G. (1999). Etiology and pathogenesis of Parkinson’s disease. Annual Review of Neuroscience, 22, 123–144. doi:10.1146/annurev.neuro.22.1.123.PubMedCrossRefGoogle Scholar
  33. Parkinson, J. (1817). An essay on the shaking palsy. London: Sherwood, Neely and Jones.Google Scholar
  34. Poewe, W., & Wenning, G. (2002). The differential diagnosis of Parkinson’s disease. European Journal of Neurology, 9(Suppl 3), 23–30. doi:10.1046/j.1468-1331.9.s3.3.x.PubMedCrossRefGoogle Scholar
  35. Raamsdonk, L. M., Teusink, B., Broadhurst, D., Zhang, N., Hayes, A., Walsh, M. C., Berden, J. A., Brindle, K. M., Kell, D. B., Rowland, J. J., Westerhoff, H. V., van Dam, K., & Oliver, S. G. (2001). A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnology, 19, 45–50. doi:10.1038/83496.PubMedCrossRefGoogle Scholar
  36. Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., & Barabasi, A. L. (2002). Hierarchical organization of modularity in metabolic networks. Science, 297, 1551–1555. doi:10.1126/science.1073374.PubMedCrossRefGoogle Scholar
  37. Sato, S., Mizuno, Y., & Hattori, N. (2005). Urinary 8-hydroxydeoxyguanosine levels as a biomarker for progression of Parkinson disease. Neurology, 64, 1081–1083.PubMedGoogle Scholar
  38. Scatton, B., Javoy-Agid, F., Rouquier, L., Dubois, B., & Agid, Y. (1983). Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Research, 275, 321–328. doi:10.1016/0006-8993(83)90993-9.PubMedCrossRefGoogle Scholar
  39. Scherzer, C. R., Eklund, A. C., Morse, L. J., Liao, Z., Locascio, J. J., Fefer, D., Schwarzschild, M. A., Schlossmacher, M. G., Hauser, M. A., Vance, J. M., Sudarsky, L. R., Standaert, D. G., Growdon, J. H., Jensen, R. V., & Gullans, S. R. (2007). Molecular markers of early Parkinson’s disease based on gene expression in blood. Proceedings of the National Academy of Sciences, 104(3), 955–960. doi:10.1073/pnas.0610204104.CrossRefGoogle Scholar
  40. Taquet, H., Javoy-Agid, F., Hamon, M., Legrand, J. C., Agid, Y., & Cesselin, F. (1983). Parkinson’s disease affects differently Met5- and Leu5-enkephalin in the human brain. Brain Research, 280, 379–382. doi:10.1016/0006-8993(83)90071-9.PubMedCrossRefGoogle Scholar
  41. Tsuboi, Y., Ahlskog, J. E., Apaydin, H., Parisi, J. E., & Dickson, D. W. (2001). Lewy bodies are not increased in progressive supranuclear palsy compared with normal controls. Neurology, 57, 1675–1678.PubMedGoogle Scholar
  42. Underwood, B. R., Broadhurst, D., Dunn, W. B., Ellis, D. I., Michell, A. W., Vacher, C., Mosedale, D. E., Kell, D. B., Barker, R. A., Grainger, D. J., & Rubinsztein, D. C. (2006). Huntington disease patients and transgenic mice have similar pro-catabolic serum metabolite profiles. Brain, 129, 877–886. doi:10.1093/brain/awl027.PubMedCrossRefGoogle Scholar
  43. Valafar, F. (2002). Pattern recognition techniques in microarray data analysis: A survey. Annals of the New York Academy of Sciences, 980, 41–64.PubMedCrossRefGoogle Scholar
  44. Van, Q. N., Klose, J. R., Lucas, D. A., Prieto, D. A., Luke, B., Collins, J., Burt, S. K., Chmurny, G. N., Issaq, H. J., Conrads, T. P., Veenstra, T. D., & Keay, S. K. (2003). The use of urine proteomic and metabonomic patterns for the diagnosis of interstitial cystitis and bacterial cystitis. Disease Markers, 19, 169–183.PubMedGoogle Scholar
  45. Van der, G. J., & McBurney, R. N. (2005). Innovation: Rescuing drug discovery: In vivo systems pathology and systems pharmacology. Nature Reviews Drug Discovery, 4, 961–967. doi:10.1038/nrd1904.CrossRefGoogle Scholar
  46. Vila, M., & Przedborski, S. (2004). Genetic clues to the pathogenesis of Parkinson’s disease. Nature Medicine, 10(Suppl), S58–S62. doi:10.1038/nm1068.PubMedCrossRefGoogle Scholar
  47. Visser, M., Marinus, J., Stiggelbout, A. M., & Van Hilten, J. J. (2004). Assessment of autonomic dysfunction in Parkinson’s disease: The SCOPA-AUT. Movement Disorders, 19, 1306–1312. doi:10.1002/mds.20153.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Andrew W. Michell
    • 1
    • 2
  • David Mosedale
    • 3
  • David J. Grainger
    • 3
    • 4
  • Roger A. Barker
    • 1
    • 2
  1. 1.Cambridge Centre for Brain RepairCambridgeUK
  2. 2.Department of Clinical Neuroscience, Addenbrooke’s HospitalUniversity of CambridgeCambridgeUK
  3. 3.Translational Research UnitPapworth Hospital NHS Foundation TrustCambridgeUK
  4. 4.Department of Medicine, Addenbrooke’s HospitalUniversity of CambridgeCambridgeUK

Personalised recommendations