, 4:52 | Cite as

Metabolite profiles of interacting mycelial fronts differ for pairings of the wood decay basidiomycete fungus, Stereum hirsutum with its competitors Coprinus micaceus and Coprinus disseminatus

  • Diluka Peiris
  • Warwick B. Dunn
  • Marie Brown
  • Douglas B. Kell
  • Ipsita Roy
  • John N. Hedger
Original Article


The paper presents the first proof-of principle study of metabolite profiles of the interacting mycelial fronts of a wood decomposer basidiomycete, Stereum hirsutum, paired with two competitor basidiomycetes, Coprinus disseminatus and C. micaceus, using TLC and GC-TOF-MS profiling. GC-TOF-MS profiles were information rich, with a total of 190 metabolite peaks detected and more than 120 metabolite peaks detected per sample. The metabolite profiles were able to discriminate between the interactions of S. hirsutum with the two species of Coprinus. In confrontation with C. micaceus, where S. hirsutum mycelial fronts always overgrew those of C. micaceus, there were down-regulations of metabolites in the interaction zone, compared to monocultures of both S. hirsutum and C. micaceus. In contrast, in pairings with C. disseminatus, whose mycelia overgrew those of S. hirsutum, there were some up-regulations compared with monoculture controls, the majority of the metabolites being characteristic of the S. hirsutum monoculture profile. These differences indicate that up-regulation of metabolites in the mycelia of S. hirsutum may be connected to a defensive role or to stress. The results also show proof of principle for the employment of metabolic profiling for biological discovery studies of metabolites produced by fungi that could be applied to natural product screening programmes.


Metabolite profiling Basidiomycete fungi Mycelial interactions 



This work was financially supported by University of Westminster, Cavendish Scholarship.


  1. Abdi, H. (2007). Bonferroni and Sidak corrections for multiple comparisons. In N. J. Salkind (Ed.), Encyclopedia of measurement and statistics. Thousand Oaks: Sage.Google Scholar
  2. Bilski, P., Li, M. Y., Ehrenshaft, M., Daub, M. E., & Chignell, C. F. (2000). Vitamin B-6 (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants. Photochemistry and Photobiology, 71, 129–134.PubMedCrossRefGoogle Scholar
  3. Boddy, L. (2000). Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiology Ecology, 31, 185–194.PubMedCrossRefGoogle Scholar
  4. Boddy, L., & Rayner, A. D. M. (1983). Ecological roles of basidiomycetes forming decay communities in attached oak branches. New Phytologist, 93, 77–88.CrossRefGoogle Scholar
  5. Bourbonnais, R., Paice, M. G., Reid, I. D., Lanthier, P., & Yaguchi, M. (1995). Lignin oxidation by laccase isozymes from trametes-versicolor and role of the mediator 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Applied and Environmental Microbiology, 61, 1876–1880.PubMedGoogle Scholar
  6. Collin, H. A. (2001). Secondary product formation in plant tissue cultures. Plant Growth Regulation, 34, 119–134.CrossRefGoogle Scholar
  7. Gloer, J. B. (1995). The chemistry of fungal antagonism and defense. Canadian Journal of Botany-Revue Canadienne De Botanique, 73, S1265–S1274.CrossRefGoogle Scholar
  8. Gregorio, A. P. F., Da Silva, I. R., Sedarati, M. R., & Hedger, J. N. (2006). Changes in production of lignin degrading enzymes during interactions between mycelia of the tropical decomposer basidiomycetes Marasmiellus troyanus and Marasmius pallescens. Mycological Research, 110, 161–168.CrossRefGoogle Scholar
  9. Griffith, G. S., Rayner, A. D. M., & Wildman, H. G. (1994). Extracellular metabolites and mycelial morphogenesis of Hypholoma fasciculare and Phlebia radiata (Hymenomycetes). Nova Hedwigia, 59, 311–329.Google Scholar
  10. Han, Y. S., Van der Heijden, R., & Verpoorte, R. (2001). Biosynthesis of anthraquinones in cell cultures of the Rubiaceae. Plant Cell Tissue and Organ Culture, 67, 201–220.CrossRefGoogle Scholar
  11. Hedger, J. N. (1985). Tropical agarics: Resource relations and fruiting periodicity. In D. Moore, L. A. Casselton, D. A. Wood, & J. C. Frankland (Eds.), Developmental biology of higher fungi (pp. 41–86). Cambridge: Cambridge University Press.Google Scholar
  12. Heilmann-Clausen, J., & Boddy, L. (2005). Inhibition and stimulation effects in communities of wood decay fungi: Exudates from colonized wood influence growth by other species. Microbial Ecology, 49, 399–406.PubMedCrossRefGoogle Scholar
  13. Humphris, S. N., Wheatley, R. E., & Bruce, A. (2001). The effects of specific volatile organic compounds produced by Trichoderma spp. on the growth of wood decay basidiomycetes. Holzforschung, 55, 233–237.CrossRefGoogle Scholar
  14. Hynes, J., Muller, C. T., Jones, T. H., & Boddy, L. (2007). Changes in volatile production during the course of fungal mycelial interactions between Hypholoma fasciculare and Resinicium bicolor. Journal of Chemical Ecology, 33, 43–57.PubMedCrossRefGoogle Scholar
  15. Ikediugwu, F. E. O., & Webster, J. (1970). Hyphal interference in a range of coprophilous fungi. Transactions of the British Mycological Society, 54, 205–210.CrossRefGoogle Scholar
  16. Johannes, C., & Majcherczyk, A. (2000). Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Applied and Environmental Microbiology, 66, 524–528.PubMedCrossRefGoogle Scholar
  17. Joliffe, I. T. (1986). Principal components analysis. New York: Springer-Verlag.Google Scholar
  18. Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47, 583–621.CrossRefGoogle Scholar
  19. Magnenot, M. F. (1952). Recherches methodiques sur les champignons de certains bois en decomposition. Revue Generale de Botanique, 59, 381–401.Google Scholar
  20. Magnuson, J. K., & Lasure, L. L. (2004). Organic acid production by filamentous fungi. In J. Lange & L. Lange (Eds.), Advance in fungal biotechnology for industry, agriculture and medicine (pp. 307–340). Washington: Kluwer Academic/Plenum Publishers.Google Scholar
  21. O’Hagan, S., Dunn, W. B., Brown, M., Knowles, J. D., & Kell, D. B. (2005). Closed-loop, multiobjective optimization of analytical instrumentation: Gas chromatography/time-of-flight mass spectrometry of the metabolomes of human serum and of yeast fermentations. Analytical Chemistry, 77, 290–303.PubMedCrossRefGoogle Scholar
  22. Rayner, A. D. M., & Boddy, L. (1988). Fungal decomposition of wood, its biology and ecology. New York: John Wiley.Google Scholar
  23. Rayner, A. D. M., Griffith, G. S., & Ainsworth, A. M. (1994). Mycelial interconnectedness. In N. A. R. Gow & G. M. Gadd (Eds.), The growing fungus (pp. 21–40). London: Chapman and Hall.CrossRefGoogle Scholar
  24. Score, A. J., Palfreyman, J. W., & White, N. A. (1997). Extracellular phenoloxidase and peroxidase enzyme production during interspecific fungal interactions. International Biodeterioration & Biodegradation, 39, 225–233.CrossRefGoogle Scholar
  25. Shearer, C. A. (1995). Fungal competition. Canadian Journal of Botany-Revue Canadienne De Botanique, 73, S1259–S1264.Google Scholar
  26. Sung, B. K., Kim, M. K., Lee, W. H., Lee, D. H., & Lee, H. S. (2004). Growth responses of Cassia obtusifolia toward human intestinal bacteria. Fitoterapia, 75, 505–509.PubMedCrossRefGoogle Scholar
  27. Tanaka, T., Tateno, Y., & Gojobori, T. (2005). Evolution of vitamin B-6 (pyridoxine) metabolism by gain and loss of genes. Molecular Biology and Evolution, 22, 243–250.PubMedCrossRefGoogle Scholar
  28. Wheatley, R. E. (2002). The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 81, 357–364.CrossRefGoogle Scholar
  29. White, N. A., & Boddy, L. (1992). Extracellular enzyme localization during interspecific fungal interactions. FEMS Microbiology Letters, 98, 75–79.CrossRefGoogle Scholar
  30. Williams, E. N. D., Todd, N. K., & Rayner, A. D. M. (1981). Spatial development of populations of Coriolus versicolor. New Phytologist, 89, 307–319.CrossRefGoogle Scholar
  31. Wold, H. (1966). Estimation of principal components and related models by iterative least squares. In P. R. Krishnaiah (Ed.), Multivariate analysis (pp. 391–420). New York: Academic Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Diluka Peiris
    • 1
  • Warwick B. Dunn
    • 2
    • 3
  • Marie Brown
    • 2
  • Douglas B. Kell
    • 2
    • 3
  • Ipsita Roy
    • 1
  • John N. Hedger
    • 1
  1. 1.Fungal Biotechnology Group, School of BiosciencesThe University of WestminsterLondonUK
  2. 2.Bioanalytical Sciences Group, School of Chemistry, Manchester Interdisciplinary BiocentreThe University of ManchesterManchesterUK
  3. 3.The Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary BiocentreThe University of ManchesterManchesterUK

Personalised recommendations