Metabolomics

, Volume 3, Issue 4, pp 439–451

Variation of metabolites in normal human urine

  • Erik J. Saude
  • Darryl Adamko
  • Brian H. Rowe
  • Tom Marrie
  • Brian D. Sykes
Original Paper

Abstract

Urine is often sampled from patients participating in clinical and metabolomic studies. Biological homeostasis occurs in humans, but little is known about the variability of metabolites found in urine. It is important to define the inter- and intra-individual metabolite variance within a normal population before scientific or clinical conclusions are made regarding different pathophysiologies. This study investigates the variability of selected urine metabolites in a group of 60 healthy men and women over a period of 30 days. To monitor individual variation, 6 women from the normal population were randomly selected and followed for 30 days. To determine the influence of extraneous environmental factors urine was collected from 25 guinea pigs with similar genetics, diet, and living environment. For both studies, 24 metabolites were identified and quantified using high-resolution 1H nuclear magnetic resonance spectroscopy (NMR). The data demonstrated large inter and intra-individual variation in metabolite concentrations in both normal human and control animal populations. A defined normal baseline is essential before any conclusions may be drawn regarding changes in urine metabolite concentrations.

Keywords

Metabolite Metabolomics NMR Normal Urine 

References

  1. Aspevall, O., Hallander, H., Gant, V., & Kouri, T. (2001). European guidelines for urinalysis: a collaborative document produced by European clinical microbiologists and clinical chemists under ECLM in collaboration with ESCMID. Clinical Microbiology and Infection, 7, 173–178.PubMedCrossRefGoogle Scholar
  2. Assadi, F. K. (2002). Quantitation of microalbuminuria using random urine samples. Pediatric Nephrology, 17, 107–110.PubMedCrossRefGoogle Scholar
  3. Bollard, M. E., Holmes, E., Lindon, J. C., Mitchell, S. C., Branstetter, D., Zhang, W., & Nicholson, J. K. (2001). Investigations into biochemical changes due to diurnal variation and estrus cycle in female rats using high-resolution (1)H NMR spectroscopy of urine and pattern recognition. Analytical Biochemistry, 295, 194–202.PubMedCrossRefGoogle Scholar
  4. Bollard, M. E., Stanley, E. G., Lindon, J. C., Nicholson, J. K., & Holmes, E. (2005). NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR in Biomedicine, 18, 143–162.PubMedCrossRefGoogle Scholar
  5. Brindle, J. T., Antti, H., Holmes, E., Tranter, G., Nicholson, J. K., Bethell, H. W., Clarke, S., Schofield, P. M., Mckilligin, E., Mosedale, D. E., & Grainger, D. J. (2002). Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nature Medicine, 8, 1439–1244.PubMedCrossRefGoogle Scholar
  6. Cavaluzzi, M. J., Kerwood, D. J., & Borer, P. N. (2002). Accurate nucleic acid concentrations by nuclear magnetic resonance. Analytical Biochemistry, 308, 373–380.PubMedCrossRefGoogle Scholar
  7. Chadha, V., Garg, U., & Alon, U. S. (2001). Measurement of urinary concentration: A critical appraisal of methodologies. Pediatric Nephrology, 16, 374–382.PubMedCrossRefGoogle Scholar
  8. Chung, Y. L., Rider, L. G., Bell, J. D., Summers, R. M., Zemel, L. S., Rennebohm, R. M., Passo, M. H., Hicks, J., Miller, F. W., & Scott, D. L. (2005). Muscle metabolites, detected in urine by proton spectroscopy, correlate with disease damage in juvenile idiopathic inflammatory myopathies. Arthritis and Rheumatism, 53, 565–570.PubMedCrossRefGoogle Scholar
  9. Coen, M., O’Sullivan, M., Bubb, W. A., Kuchel, P. W., & Sorrell, T. (2005). Proton nuclear magnetic resonance-based metabonomics for rapid diagnosis of meningitis and ventriculitis. Clinical Infectious Diseases, 41, 1582–1590.PubMedCrossRefGoogle Scholar
  10. Crockford, D. J., Keun, H. C., Smith, L. M., Holmes, E., & Nicholson, J. K. (2005). Curve-fitting method for direct quantitation of compounds in complex biological mixtures using 1H NMR: Application in metabonomic toxicology studies. Analytical Chemistry, 77, 4556–4562.PubMedCrossRefGoogle Scholar
  11. De Jongste, J. C. (2000). Surrogate markers of airway inflammation: Inflammometry in paediatric respiratory medicine. Paediatric Respiratory Reviews, 1, 354–360.PubMedCrossRefGoogle Scholar
  12. Duarte, I. F., Stanley, E. G., Holmes, E., Lindon, J. C., Gil, A. M., Tang, H., Ferdinand, R., Mckee, C. G., Nicholson, J. K., Vilca-Melendez, H., Heaton, N., & Murphy, G. M. (2005). Metabolic assessment of human liver transplants from biopsy samples at the donor and recipient stages using high-resolution magic angle spinning 1H NMR spectroscopy. Analytical Chemistry, 77, 5570–5578.PubMedCrossRefGoogle Scholar
  13. Dunn, W. B., Bailey, N. J., & Johnson, H. E. (2005). Measuring the metabolome: Current analytical technologies. The Analyst, 130, 606–625.PubMedCrossRefGoogle Scholar
  14. Dyer, A., Elliott, P., Chee, D., & Stamler, J. (1997). Urinary biochemical markers of dietary intake in the INTERSALT study. The American Journal of Clinical Nutrition, 65, 1246S–1253S.PubMedGoogle Scholar
  15. Ebbels, T. M., Holmes, E., Lindon, J. C., & Nicholson, J. K. (2004). Evaluation of metabolic variation in normal rat strains from a statistical analysis of 1H NMR spectra of urine. Journal of Pharmaceutical and Biomedical Analysis, 36, 823–833.PubMedCrossRefGoogle Scholar
  16. Ekins, S., Nikolsky, Y., & Nikolskaya, T. (2005). Techniques: Application of systems biology to absorption, distribution, metabolism, excretion and toxicity. Trends in Pharmacological Sciences, 26, 202–209.PubMedCrossRefGoogle Scholar
  17. Gavaghan, C. L., Wilson, I. D., & Nicholson, J. K. (2002). Physiological variation in metabolic phenotyping and functional genomic studies: Use of orthogonal signal correction and PLS-DA. FEBS Letters, 530, 191–196.PubMedCrossRefGoogle Scholar
  18. Geigy, A. L. (1981–1992). Geigy scientific tables. West Cadwell, NJ: Ciba-Geigy Corp.Google Scholar
  19. Green, R. H., Brightling, C. E., Mckenna, S., Hargadon, B., Parker, D., Bradding, P., Wardlaw, A. J., & Pavord, I. D. (2002). Asthma exacerbations and sputum eosinophil counts: A randomised controlled trial. Lancet, 360, 1715–1721.PubMedCrossRefGoogle Scholar
  20. Guneral, F., & Bachmann, C. (1994). Age-related reference values for urinary organic acids in a healthy Turkish pediatric population. Clinical Chemistry, 40, 862–866.PubMedGoogle Scholar
  21. Holmes, E., Nicholls, A. W., Lindon, J. C., Connor, S. C., Connelly, J. C., Haselden, J. N., Damment, S. J., Spraul, M., Neidig, P., & Nicholson, J. K. (2000). Chemometric models for toxicity classification based on NMR spectra of biofluids. Chemical Research in Toxicology, 13, 471–478.PubMedCrossRefGoogle Scholar
  22. Keller, N. P., Turner, G., & Bennett, J. W. (2005). Fungal secondary metabolism—from biochemistry to genomics. Nature Reviews. Microbiology, 3, 937–947.PubMedCrossRefGoogle Scholar
  23. Keun, H. C., Ebbels, T. M., Antti, H., Bollard, M. E., Beckonert, O., Schlotterbeck, G., Senn, H., Niederhauser, U., Holmes, E., Lindon, J. C., & Nicholson, J. K. (2002). Analytical reproducibility in (1)H NMR-based metabonomic urinalysis. Chemical Research in Toxicology, 15, 1380–1386.PubMedCrossRefGoogle Scholar
  24. Kraut, J. A., & Kurtz, I. (2005). Metabolic acidosis of CKD: Diagnosis, clinical characteristics, and treatment. American Journal of Kidney Diseases, 45, 978–993.PubMedCrossRefGoogle Scholar
  25. Kubitz, R., Keitel, V., & Haussinger, D. (2005). Inborn errors of biliary canalicular transport systems. Methods in Enzymology, 400, 558–569.PubMedGoogle Scholar
  26. Kumar, A., Ernst, R. R., & Wuthrich, K. (1980). A two-dimensional nuclear overhauser enhancement (2D NOE) experiment for the elucidation of complete proton–proton cross-relaxation networks in biological macromolecules. Biochemical and Biophysical Research Communications, 95, 1–6.PubMedCrossRefGoogle Scholar
  27. Lenz, E. M., Bright, J., Wilson, I. D., Morgan, S. R., & Nash, A. F. (2003). A 1H NMR-based metabonomic study of urine and plasma samples obtained from healthy human subjects. Journal of Pharmaceutical and Biomedical Analysis, 33, 1103–1115.PubMedCrossRefGoogle Scholar
  28. Lenz, E. M., Bright, J., Wilson, I. D., Hughes, A., Morrisson, J., Lindberg, H., & Lockton, A. (2004). Metabonomics, dietary influences and cultural differences: A 1H NMR-based study of urine samples obtained from healthy British and Swedish subjects. Journal of Pharmaceutical and Biomedical Analysis, 36, 841–849.PubMedCrossRefGoogle Scholar
  29. Lindon, J. C., Holmes, E., Bollard, M. E., Stanley, E. G., & Nicholson, J. K. (2004). Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers, 9, 1–31.PubMedCrossRefGoogle Scholar
  30. Moolenaar, S. H., Engelke, U. F., & Wevers, R. A. (2003). Proton nuclear magnetic resonance spectroscopy of body fluids in the field of inborn errors of metabolism. Annals of Clinical Biochemistry, 40, 16–24.PubMedCrossRefGoogle Scholar
  31. Phipps, A. N., Stewart, J., Wright, B., & Wilson, I. D. (1998). Effect of diet on the urinary excretion of hippuric acid and other dietary-derived aromatics in rat. A complex interaction between diet, gut microflora and substrate specificity. Xenobiotica, 28, 527–537.PubMedCrossRefGoogle Scholar
  32. Rastall, R. A., Gibson, G. R., Gill, H. S., Guarner, F., Klaenhammer, T. R., Pot, B., Reid, G., Rowland, I. R., & Sanders, M. E. (2005). Modulation of the microbial ecology of the human colon by probiotics, prebiotics and synbiotics to enhance human health: An overview of enabling science and potential applications. FEMS Microbiology Ecology, 52, 145–152.PubMedCrossRefGoogle Scholar
  33. Sabatine, M. S., Liu, E., Morrow, D. A., Heller, E., Mccarroll, R., Wiegand, R., Berriz, G. F., Roth, F. P., & Gerszten, R. E. (2005). Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation, 112, 3868–3875.PubMedCrossRefGoogle Scholar
  34. Sardari, S., & Sardari, D. (2002). Applications of artificial neural network in AIDS research and therapy. Current Pharmaceutical Design, 8, 659–670.PubMedCrossRefGoogle Scholar
  35. Saude, E. J., Slupsky, C. M., & Sykes, B. D. (2006). Optimization of NMR analysis of biological fluids for quantitative accuracy. Metabolomics, 2, 113–123.CrossRefGoogle Scholar
  36. Saude, E. J., Sykes, B. D. (2007). Urine stability for metabolomic studies: Effects of preparation and storage. Metabolomics, 3, 19–27.CrossRefGoogle Scholar
  37. Shockcor, J. P., & Holmes, E. (2002). Metabonomic applications in toxicity screening and disease diagnosis. Current Topics in Medicinal Chemistry, 2, 35–51.PubMedCrossRefGoogle Scholar
  38. Singer, M. (2005). Metabolic failure. Critical Care Medicine, 33, S539–s542.PubMedCrossRefGoogle Scholar
  39. Slupsky, C. M., Rankin, K., Wagner, J., Fu, H., Chang, D., Weljie, A. M., Saude, E. J., Lix, B., Adamko, D. J., Shah, S., Greiner, R., Sykes, B. D., Marrie, T. J. (2007). Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Analytical Chemistry, 79, in press.Google Scholar
  40. Somorjai, R. L., Dolenko, B., Demko, A., Mandelzweig, M., Nikulin, A. E., Baumgartner, R., & Pizzi, N. J. (2004). Mapping high-dimensional data onto a relative distance plane—an exact method for visualizing and characterizing high-dimensional patterns. Journal of Biomedical Informatics, 37, 366–379.PubMedCrossRefGoogle Scholar
  41. Stanley, E. G., Bailey, N. J., Bollard, M. E., Haselden, J. N., Waterfield, C. J., Holmes, E., & Nicholson, J. K. (2005). Sexual dimorphism in urinary metabolite profiles of Han Wistar rats revealed by nuclear-magnetic-resonance-based metabonomics. Analytical Biochemistry, 343, 195–202.PubMedCrossRefGoogle Scholar
  42. Stoyanova, R., & Brown, T. R. (2001). NMR spectral quantitation by principal component analysis. NMR in Biomedicine, 14, 271–277.PubMedCrossRefGoogle Scholar
  43. Symanski, E., & Greeson, N. M. (2002). Assessment of variability in biomonitoring data using a large database of biological measures of exposure. AIHA Journal (Fairfax, Va), 63, 390–401.CrossRefGoogle Scholar
  44. Tate, A. R., Damment, S. J., & Lindon, J. C. (2001). Investigation of the metabolite variation in control rat urine using (1)H NMR spectroscopy. Analytical Biochemistry, 291, 17–26.PubMedCrossRefGoogle Scholar
  45. Trachtenbarg, D. E. (2005). Diabetic ketoacidosis. American Family Physician, 71, 1705–1714.PubMedGoogle Scholar
  46. Van Rhijn, B. W., Van Der Poel, H. G., & Van Der Kwast, T. H. (2005). Urine markers for bladder cancer surveillance: A systematic review. European Urology, 47, 736–748.PubMedCrossRefGoogle Scholar
  47. Weckwerth, W. (2003). Metabolomics in systems biology. Annual Review of Plant Biology, 54, 669–689.PubMedCrossRefGoogle Scholar
  48. Wennergren, G. (2000). Inflammatory mediators in blood and urine. Paediatric Respiratory Review, 1, 259–265.CrossRefGoogle Scholar
  49. Zuppi, C., Messana, I., Forni, F., Rossi, C., Pennacchietti, L., Ferrari, F., & Giardina, B. (1997). 1H NMR spectra of normal urines: Reference ranges of the major metabolites. Clinica Chimica Acta, 265, 85–97.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Erik J. Saude
    • 1
    • 2
    • 3
  • Darryl Adamko
    • 2
    • 3
  • Brian H. Rowe
    • 2
    • 4
  • Tom Marrie
    • 5
  • Brian D. Sykes
    • 1
  1. 1.CIHR Group in Protein Structure and Function, Department of BiochemistryUniversity of AlbertaEdmontonCanada
  2. 2.Pulmonary Research GroupUniversity of AlbertaEdmontonCanada
  3. 3.Department of PediatricsUniversity of AlbertaEdmontonCanada
  4. 4.Department of Emergency MedicineUniversity of AlbertaEdmontonCanada
  5. 5.Department of Internal Medicine, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonCanada

Personalised recommendations