, Volume 3, Issue 4, pp 413–426 | Cite as

Serum metabolomics reveals many novel metabolic markers of heart failure, including pseudouridine and 2-oxoglutarate

  • Warwick B. Dunn
  • David I. Broadhurst
  • Sasalu M. Deepak
  • Mamta H. Buch
  • Garry McDowell
  • Irena Spasic
  • David I. Ellis
  • Nicholas Brooks
  • Douglas B. Kell
  • Ludwig Neyses


There is intense interest in the identification of novel biomarkers which improve the diagnosis of heart failure. Serum samples from 52 patients with systolic heart failure (EF < 40% plus signs and symptoms of failure) and 57 controls were analyzed by gas chromatography – time of flight – mass spectrometry and the raw data reduced to 272 statistically robust metabolite peaks. 38 peaks showed a significant difference between case and control (p < 5 × 10−5). Two such metabolites were pseudouridine, a modified nucleotide present in t- and rRNA and a marker of cell turnover, as well as the tricarboxylic acid cycle intermediate 2-oxoglutarate. Furthermore, 3 further new compounds were also excellent discriminators between patients and controls: 2-hydroxy, 2-methylpropanoic acid, erythritol and 2,4,6-trihydroxypyrimidine. Although renal disease may be associated with heart failure, and metabolites associated with renal disease and other markers were also elevated (e.g. urea, creatinine and uric acid), there was no correlation within the patient group between these metabolites and our heart failure biomarkers, indicating that these were indeed biomarkers of heart failure and not renal disease per se. These findings demonstrate the power of data-driven metabolomics approaches to identify such markers of disease.


heart failure metabolomics biomarkers pseudouridine 2-oxoglutarate 


  1. Amuro, Y., Nakaoka, H., Shimomura, S., Fujikura, M., Yamamoto, T., Tamura, S., Hada, T., Higashino, K. (1988) Serum pseudouridine as a biochemical marker in patients with hepatocellular carcinoma. Clin. Chim. Acta, 178, 151–158PubMedCrossRefGoogle Scholar
  2. Anker, S.D., Doehner, W., Rauchhaus, M., Sharma, R., Francis, D., Knosalla, C., Davos, C.H., Cicoira, M., Shamim, W., Kemp, M., Segal, R., Osterziel, K.J., Leyva, F., Hetzer, R., Ponikowski, P., Coats, A.J. (2003) Uric acid and survival in chronic heart failure: validation and application in metabolic, functional, and hemodynamic staging. Circulation, 107, 1991–1997PubMedCrossRefGoogle Scholar
  3. Bland, J.M., Altman, D.G. (1995) Multiple significance tests: the Bonferroni method. BMJ, 310, 170PubMedGoogle Scholar
  4. Bongartz, L.G., Cramer, M.J., Doevendans, P.A., Joles, J.A., Braam, B. (2005) The severe cardiorenal syndrome: ‘Guyton revisited’. Eur. Heart. J., 26, 11–7PubMedCrossRefGoogle Scholar
  5. Broadhurst, D., Kell, D.B. (2006) Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics, 2, 171–196; DOI: 10.1007/s11306-006-0037-zCrossRefGoogle Scholar
  6. Bultitude, F.W., Newham, S.J. (1975) Identification of some abnormal metabolites in plasma from uremic subjects. Clin. Chem., 21, 1329–1334PubMedGoogle Scholar
  7. Charette, M., Gray, M.W. (2000) Pseudouridine in RNA: what, where, how, and why. IUBMB Life, 49, 341–351PubMedCrossRefGoogle Scholar
  8. Csete, M., Doyle, J. (2004) Bow ties, metabolism and disease. Trends Biotechnol., 22, 446–450PubMedCrossRefGoogle Scholar
  9. Culleton, B.F., Larson, M.G., Evans, J.C., Wilson, P.W., Barrett, B.J., Parfrey, P.S., Levy, D. (1999a) Prevalence and correlates of elevated serum creatinine levels: the Framingham Heart Study. Arch. Intern. Med. 159, 1785–1790PubMedCrossRefGoogle Scholar
  10. Culleton, B.F., Larson, M.G., Kannel, W.B., Levy, D. (1999b) Serum uric acid and risk for cardiovascular disease and death: the Framingham Heart Study. Ann. Intern. Med., 131, 7–13PubMedGoogle Scholar
  11. De Sousa, E., Veksler, V., Bigard, X., Mateo, P., Ventura-Clapier, R. (2000) Heart failure affects mitochondrial but not myofibrillar intrinsic properties of skeletal muscle. Circulation 102, 1847–1853PubMedGoogle Scholar
  12. DiCiccio, T.J., Efron, B. (1996) Bootstrap confidence intervals. Stat. Sci., 11, 189–228CrossRefGoogle Scholar
  13. Drexler, H., Riede, U., Munzel, T., Konig, H., Funke, E., Just, H. (1992) Alterations of skeletal muscle in chronic heart failure. Circulation, 85, 1751–1759PubMedGoogle Scholar
  14. Duarte, N.C., Becker, S.A., Jamshidi, N., Thiele, I., Mo, M.L., Vo, T.D., Srvivas, R., Palsson, B.Ø. (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl. Acad. Sci. 104, 1777–1782PubMedCrossRefGoogle Scholar
  15. Dunn, W.B., Ellis, D.I. (2005) Metabolomics: current analytical platforms and methodologies. Trends Anal. Chem. 24, 285–294CrossRefGoogle Scholar
  16. Efron, B., Gong, G. (1983) A leisurely look at the bootstrap, the jackknife, and cross-validation. American Statistician 37, 36–48CrossRefGoogle Scholar
  17. Efron, B., Tibshirani, R.J. (1993) Introduction to the Bootstrap. London, Chapman and HallGoogle Scholar
  18. Finck, B.N., Kelly, D.P. (2006) PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 116, 615–622PubMedCrossRefGoogle Scholar
  19. Harrigan G.G., Goodacre R. (Eds) (2003) Metabolic Profiling: its Role in Biomarker Discovery and Gene Function analysis. Boston, Kluwer Academic PublishersGoogle Scholar
  20. Hierro, E., Ordonez, J., Bruna, J. M., Pin, C., Fernandez, M., de la Hoz, L. (2005) Volatile compound generation in dry fermented sausages by the surface inoculation of selected mould species. Eur. Food Res. Technol. 220, 494–501CrossRefGoogle Scholar
  21. Higley, B., De Mello, J., Jr., Oakes, D.J., Giles, G. R. (1982) Serum pseudouridine concentration as a marker of gastrointestinal cancer. Clin. Oncol. 8, 305–312PubMedGoogle Scholar
  22. Hollander, M., Wolfe, D.A. (1973) Nonparametric Statistical Methods. New York, WileyGoogle Scholar
  23. Jauniaux, E., Hempstock, J., Teng, C., Battaglia, F. C., Burton, G.J. (2005) Polyol concentrations in the fluid compartments of the human conceptus during the first trimester of pregnancy: maintenance of redox potential in a low oxygen environment. J. Clin. Endocrinol. Metab. 90, 1171–1175PubMedCrossRefGoogle Scholar
  24. Kell, D.B. (2004) Metabolomics and systems biology: making sense of the soup. Curr. Op. Microbiol. 7, 296–307CrossRefGoogle Scholar
  25. Kell, D.B. (2006a) Metabolomics, modelling and machine learning in systems biology: towards an understanding of the languages of cells. The 2005 Theodor Bücher lecture FEBS J. 273, 873–894PubMedCrossRefGoogle Scholar
  26. Kell, D.B. (2006b) Systems biology, metabolic modelling and metabolomics in drug discovery and development. Drug Disc. Today, 11, 1085–1092CrossRefGoogle Scholar
  27. Kell, D.B., Oliver, S.G. (2004) Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. Bioessays 26, 99–105PubMedCrossRefGoogle Scholar
  28. Kenny, L.C., Dunn, W.B., Ellis, D.I., Myers, J., Baker, P. N., The GOPEC Consortium and Kell, D.B. (2005) Novel biomarkers for pre-eclampsia detected using metabolomics and machine learning. Metabolomics. 1, 227–234 - online DOI: 10.1007/s11306–005-0003-1Google Scholar
  29. Kirschenlohr, H.L., Griffin, J.L., Clarke, S.C., Rhydwen, R., Grace, A.A., Schofield, P.M., Brindle, K. M., Metcalfe, J. C. (2006) Proton NMR analysis of plasma is a weak predictor of coronary artery disease. Nat. Med., 12, 705–710PubMedCrossRefGoogle Scholar
  30. Leyva, F., Anker, S., Swan, J.W., Godsland, I.F., Wingrove, C.S., Chua, T.P., Stevenson, J.C., Coats, A.J. (1997) Serum uric acid as an index of impaired oxidative metabolism in chronic heart failure. Eur. Heart. J. 18, 858–865PubMedGoogle Scholar
  31. Leyva, F., Anker, S.D., Godsland, I.F., Teixeira, M., Hellewell, P.G., Kox, W.J., Poole-Wilson, P.A., Coats, A.J. (1998a) Uric acid in chronic heart failure: a marker of chronic inflammation. Eur. Heart. J. 19, 1814–1822PubMedCrossRefGoogle Scholar
  32. Leyva, F., Chua, T.P., Anker, S.D., Coats, A.J. (1998b) Uric acid in chronic heart failure: a measure of the anaerobic threshold. Metabolism 47, 1156–1159PubMedCrossRefGoogle Scholar
  33. Mackay, D.J.C. (2003) Information Theory, Inference and Learning Algorithms. Cambridge: Cambridge University PressGoogle Scholar
  34. Morgan, H.E., Gordon, E.E., Kira, Y., Chua, H.L., Russo, L.A., Peterson, C.J., McDermott, P.J., Watson, P. A. (1987) Biochemical mechanisms of cardiac hypertrophy. Annu. Rev. Physiol. 49, 533–543PubMedCrossRefGoogle Scholar
  35. Neijssel, O.M., Tempest, D.W. (1976) The role of energy-splitting reactions in the growth of Klebsiella aerogenes NCTC 418 in aerobic chemostat culture. Arch. Microbiol. 110, 305–311PubMedCrossRefGoogle Scholar
  36. Neubauer, S., Horn, M., Cramer, M., Harre, K., Newell, J. B., Peters, W., Pabst, T., Ertl, G., Hahn, D., Ingwall, J. S., Kochsiek, K. (1997) Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation, 96, 2190–2196PubMedGoogle Scholar
  37. Nicholson, J.K., Holmes, E., Wilson, I.D. (2005) Gut microorganisms, mammalian metabolism and personalized health care. Nat. Rev. Microbiol. 3, 431–438PubMedCrossRefGoogle Scholar
  38. Niwa, T., Takeda, N., Yoshizumi, H. (1998) RNA metabolism in uremic patients: accumulation of modified ribonucleosides in uremic serum. Technical note Kidney Int. 53, 1801–1806PubMedCrossRefGoogle Scholar
  39. O’Hagan, S., Dunn, W.B., Broadhurst, D., Williams, R., Ashworth, J.A., Cameron, M., Knowles, J., Kell, D. B. (2007) Closed-loop, multi-objective optimisation of two-dimensional gas chromatography (GCxGC-tof-MS) for serum metabolomics. Anal. Chem. 79, 464–476PubMedCrossRefGoogle Scholar
  40. O’Hagan, S., Dunn, W.B., Brown, M., Knowles, J.D., Kell, D.B. (2005) Closed-loop, multiobjective optimisation of analytical instrumentation: gas-chromatography-time-of-flight mass spectrometry of the metabolomes of human serum and of yeast fermentations. Anal. Chem. 77, 290–303PubMedCrossRefGoogle Scholar
  41. Ofengand, J. (2002) Ribosomal RNA pseudouridines and pseudouridine synthases. FEBS Lett. 514, 17–25PubMedCrossRefGoogle Scholar
  42. Oliver, S.G., Winson, M.K., Kell, D.B., Baganz, F. (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol. 16, 373–378PubMedCrossRefGoogle Scholar
  43. Orešič, M., Vidal-Puig, A., Hänninen, V. (2006) Metabolomic approaches to phenotype characterization and applications to complex diseases. Expert Rev. Mol. Diagn. 6, 575–585PubMedCrossRefGoogle Scholar
  44. Pan, J.P., Liu, T.Y., Chiang, S.C., Lin, Y.K., Chou, C.Y., Chan, W.L., Lai, S.T. (2004) The value of plasma levels of tumor necrosis factor-alpha and interleukin-6 in predicting the severity and prognosis in patients with congestive heart failure. J. Chin. Med. Assoc. 67, 222–228PubMedGoogle Scholar
  45. Pane, F., Savoia, M., Fortunato, G., Camera, A., Rotoli, B., Salvatore, F., Sacchetti, L. (1993) Serum pseudouridine in the diagnosis of acute leukaemias and as a novel prognostic indicator in acute lymphoblastic leukaemia. Clin. Biochem., 26, 513–520PubMedCrossRefGoogle Scholar
  46. Pearl, J. (2000) Causality: Models, Reasoning and Inference. Cambridge, Cambridge University PressGoogle Scholar
  47. Perneger, T.V. (1998) What’s Wrong with Bonferroni Adjustments. Bmj, 316, 1236–1238PubMedGoogle Scholar
  48. Pitkänen, E. (1972) Serum polyol pattern and urinary polyol excretion in diabetic and in uremic patients. Clin. Chim. Acta. 38, 221–230PubMedCrossRefGoogle Scholar
  49. Raamsdonk, L.M., Teusink, B., Broadhurst, D., Zhang, N., Hayes, A., Walsh, M., Berden, J.A., Brindle, K.M., Kell, D.B., Rowland, J.J., Westerhoff, H.V., van Dam, K., Oliver, S.G. (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnol. 19, 45–50CrossRefGoogle Scholar
  50. Ransohoff, D.F. (2005) Bias as a threat to the validity of cancer molecular-marker research. Nat. Rev. Cancer 5, 142–149PubMedCrossRefGoogle Scholar
  51. Roboz, J., Kappatos, D., Holland, J.F. (1990) Polyol concentrations in serum during hemodialysis. Clin. Chem. 36, 2082–2086PubMedGoogle Scholar
  52. Roboz, J., Kappatos, D.C., Greaves, J., Holland, J. F. (1984) Determination of polyols in serum by selected ion monitoring. Clin. Chem. 30, 1611–1615PubMedGoogle Scholar
  53. Rothman, K.J., Greenland, S. (1998) Modern Epidemiology, 2nd ed. Philadelphia: Lippincott, Williams & WilkinsGoogle Scholar
  54. Russo, T., Colonna, A., Salvatore, F., Cimino, F., Bridges, S., Gurgo, C. (1984) Serum pseudouridine as a biochemical marker in the development of AKR mouse lymphoma. Cancer Res. 44, 2567–2570PubMedGoogle Scholar
  55. Sabatine, M.S., Liu, E., Morrow, D.A., Heller, E., McCarroll, R., Wiegand, R., Berriz, G.F., Roth, F.P., Gerszten, R.E. (2005) Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation 112, 3868–3875PubMedCrossRefGoogle Scholar
  56. Sakai, H., Tsutamoto, T., Tsutsui, T., Tanaka, T., Ishikawa, C., Horie, M. (2006) Serum level of uric acid, partly secreted from the failing heart, is a prognostic marker in patients with congestive heart failure. Circ. J., 70, 1006–1011PubMedCrossRefGoogle Scholar
  57. Salvatore, F., Russo, T., Colonna, A., Cimino, L., Mazzacca, G., Cimino, F. (1983) Pseudouridine determination in blood serum as tumor marker. Cancer Detect. Prev. 6, 531–536PubMedGoogle Scholar
  58. Schoots, A.C., Mikkers, F.E.P., Cramers, C.A.M.G., Ringoir, S. (1979) Profiling of uremic serum by high-resolution gas chromatography-electron-impact, chemical ionization mass spectrometry. J. Chromatogr. 164, 1–8PubMedCrossRefGoogle Scholar
  59. Smith, G.L., Shlipak, M.G., Havranek, E.P., Foody, J.M., Masoudi, F.A., Rathore, S.S., Krumholz, H.M. (2006) Serum urea nitrogen, creatinine, and estimators of renal function: mortality in older patients with cardiovascular disease. Arch. Intern. Med. 166, 1134–1142PubMedCrossRefGoogle Scholar
  60. Tamura, S., Fujioka, H., Nakano, T., Hada, T., Higashino, K. (1987) Serum pseudouridine as a biochemical marker in small cell lung cancer. Cancer. Res. 47, 6138–6141PubMedGoogle Scholar
  61. Troughton, R.W., Frampton, C.M., Yandle, T.G., Espiner, E.A., Nicholls, M.G., Richards, A.M. (2000) Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. Lancet, 355, 1126–1130PubMedCrossRefGoogle Scholar
  62. Tsutamoto, T., Wada, A., Sakai, H., Ishikawa, C., Tanaka, T., Hayashi, M., Fujii, M., Yamamoto, T., Dohke, T., Ohnishi, M., Takashima, H., Kinoshita, M., Horie, M. (2006) Relationship between renal function and plasma brain natriuretic peptide in patients with heart failure. J. Am. Coll. Cardiol. 47, 582–586PubMedCrossRefGoogle Scholar
  63. Underwood, B.R., Broadhurst, D., Dunn, W.B., Ellis, D.I., Michell, A.W., Vacher, C., Mosedale, D.B., Kell, D.B., Barker, R., Grainger, D.J., Rubinsztein, D. C. (2006) Huntington’s disease patients and transgenic mice have similar pro-catabolic serum metabolite profiles. Brain, 29, 877–886CrossRefGoogle Scholar
  64. van der Greef, J., Hankemeier, T., McBurney, R.N. (2006) Metabolomics-based systems biology and personalized medicine: moving towards n = 1 clinical trials? Pharmacogenomics, 7, 1087–1094PubMedCrossRefGoogle Scholar
  65. van der Greef, J., Stroobant, P., van der Heijden, R. (2004) The role of analytical sciences in medical systems biology. Curr. Opin. Chem. Biol., 8, 559–565PubMedCrossRefGoogle Scholar
  66. Verhoeven, N.M., Huck, J.H., Roos, B., Struys, E. A., Salomons, G.S., Douwes, A.C., van der Knaap, M. S., Jakobs, C. (2001) Transaldolase deficiency: liver cirrhosis associated with a new inborn error in the pentose phosphate pathway. Am. J. Hum. Genet. 68, 1086–1092PubMedCrossRefGoogle Scholar
  67. Wacholder, S., Chanock, S., Garcia-Closas, M., El Ghormli, L., Rothman, N. (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J. Natl. Cancer. Inst. 96, 434–442PubMedCrossRefGoogle Scholar
  68. Wamelink, M.M., Smith, D.E., Jakobs, C., Verhoeven, N.M. (2005) Analysis of polyols in urine by liquid chromatography-tandem mass spectrometry: A useful tool for recognition of inborn errors affecting polyol metabolism. J. Inherit. Metab. Dis. 28, 951–963PubMedCrossRefGoogle Scholar
  69. Xu, G., Schmid, H.R., Lu, X., Liebich, H.M., & Lu, P. (2000) Excretion pattern investigation of urinary normal and modified nucleosides of breast cancer patients by RP-HPLC and factor analysis method. Biomed Chromatogr, 14, 459–63PubMedCrossRefGoogle Scholar
  70. Zaphiriou, A., Robb, S., Murray-Thomas, T., Mendez, G., Fox, K., McDonagh, T., Hardman, S.M., Dargie, H.J., Cowie, M.R. (2005) The diagnostic accuracy of plasma BNP and NTproBNP in patients referred from primary care with suspected heart failure: results of the UK natriuretic peptide study. Eur. J. Heart Fail. 7, 537–541PubMedCrossRefGoogle Scholar
  71. Zheng, Y.F., Kong, H.W., Xiong, J.H., Lv, S., Xu, G.W. (2005) Clinical significance and prognostic value of urinary nucleosides in breast cancer patients. Clin Biochem, 8, 24–30CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Warwick B. Dunn
    • 1
    • 2
  • David I. Broadhurst
    • 2
  • Sasalu M. Deepak
    • 3
    • 4
  • Mamta H. Buch
    • 3
  • Garry McDowell
    • 5
  • Irena Spasic
    • 1
    • 2
  • David I. Ellis
    • 2
  • Nicholas Brooks
    • 4
  • Douglas B. Kell
    • 1
    • 2
  • Ludwig Neyses
    • 3
  1. 1.The Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary BiocentreThe University of ManchesterManchesterUK
  2. 2.School of Chemistry, Manchester Interdisciplinary BiocentreThe University of ManchesterManchesterUK
  3. 3.Division of Cardiovascular and Endocrine SciencesThe University of ManchesterManchesterUK
  4. 4.Department of CardiologySouth Manchester University HospitalManchesterUK
  5. 5.Department of Clinical BiochemistryManchester Royal InfirmaryManchesterUK

Personalised recommendations