, Volume 3, Issue 4, pp 465–473 | Cite as

A methodology for screening haemolymph of intertidal mussels, Mytilus edulis, using FT-IR spectroscopy as a tool for environmental assesment

  • Eleanor A. Gidman
  • M. Laurence M. Jones
  • James A. Bussell
  • Shelagh K. Malham
  • Brian Reynolds
  • Ray Seed
  • David R. Causton
  • Helen E. Johnson
  • Dylan Gwynn-Jones


Developing effective, rapid and inexpensive methods for monitoring and conserving aquatic resources is an important issue for environmental managers. This study focuses on Mytilus edulis, a keystone species of many coastal marine communities, which is frequently used as a biomonitor for a range of pollutants. Recent advances in post-genomic technologies have provided new methods of biochemical screening, and Fourier transform-infrared spectroscopy (FT-IR) is one such method that could enable bioindicator species to be used for environmental assessment. This paper develops a methodology to apply the FT-IR approach to marine intertidal M. edulis and addresses three methodological issues: First, the optimum physical location for biofluid sampling is examined (i.e. laboratory versus field). Secondly, the effects of transportation of frozen biofluid sampling from either the field-site or laboratory to the analytical facility are considered. Finally, the effect of repeated FT-IR measurements on collected M. edulis haemolymph samples is examined. From these results we suggest sampling haemolymph from M. edulis at the top of the shore prior to immediate snap-freezing in liquid nitrogen. Sample transportation can occur on ice for up to eight hours before storage at −80 °C. FT-IR measurements should occur within three months of collection and samples should not be used or thawed more than twice. We show how this method can be used to differentiate successfully between four different estuarine environments. Ultimately, through addressing these methodological questions, we provide a protocol to allow efficient sampling and FT-IR measurement of M. edulis as collected from the intertidal areas of rocky and muddy shores. We conclude that due to current monitoring needs presented by the European Water Framework Directive such an approach could prove to be an invaluable future tool for assessing coastal water quality.


Environmental assessment FT-IR Metabolic fingerprinting Mytilus edulis Haemolymph Intertidal ecosystems 


  1. Andersen V., Maage A., Johannessen P.J. (1996) Heavy metals in blue mussels (Mytilus edulis) in the Bergen Harbor area, western Norway. B. Environ. Contam. Tox. 57: 589–596CrossRefGoogle Scholar
  2. Anderson R.S. (1999) The chemiluminescence response of bivalve haemocytes: utility in screening for immunodulators and as a biomarker. Biomarkers 4: 531–536CrossRefGoogle Scholar
  3. Bokn T.L., Hoell E.E., Kersting K., Moy F.E., Sørensen K. (2001) Methods applied in the large littoral mesocosms study of nutrient enrichment in rocky shore ecosystems–EULIT. Cont. Shelf Res. 21: 1925–1936CrossRefGoogle Scholar
  4. Bouwman, A.F., Van Drecht, G., Knoop, J.M., Beusen, A.H.W. and Meinardi, C.R. (2005) Exploroing changes in river nitrogen export to the world’s oceans. Global Biogeochem. Cycles 19, GB1002, doi:10.1029/2004GB002314Google Scholar
  5. Chatfield C., Collins A.J. (1980) Introduction to multivariate analysis. Chapman & Hall, LondonGoogle Scholar
  6. Chu F-L.E. (1999) Effects of field-contaminated sediments and related water soluble components on haemocyte function and Perkinsus marinus susceptibility and expression in oysters. Biomarkers 4: 537–548CrossRefGoogle Scholar
  7. Dyrynda E.A., Pipe R.K., Burt G.R., Ratcliffe N.A. (1998) Modulations in the immune defences of mussels (Mytilus edulis) from contaminated sites in the UK. Aquat. Toxicol. 42: 169–185CrossRefGoogle Scholar
  8. Ellis D.I., Harrigan G.G., Goodacre R. (2003). Metabolic fingerprinting with fourier transform infrared spectroscopy. In: Harrigan G.G., Goodacre R. (Eds), Metabolic profiling: its role in biomarker discovery and gene function analysis. Kluwer Academic Publishers, Dordrecht, pp 111–124Google Scholar
  9. European Parliament and the Council of the European Communities (1991) Directive 91/676/EEC on nitrates from agricultural sources. ( – accessed 6th July 2006)Google Scholar
  10. European Parliament and the Council of the European Union (2000) Establishing a framework for community action in the field of water policy. Official Journal of the European Communities, 22.12.2000, L 327/1Google Scholar
  11. Fiehn O. (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp. Funct. Genomics. 2: 155–168CrossRefPubMedGoogle Scholar
  12. Frasco M.F., Fournier D., Carvalho F., Guilhermino L. (2005) Do metals inhibit acetylcholinesterase (AChE)? Implementation of assay conditions for the use of AChE activity as a biomarker of metal toxicity. Biomarkers, 10: 360–375PubMedCrossRefGoogle Scholar
  13. Gidman E.A., Goodacre R., Emmett B. et al., (2005) Metabolic fingerprinting for bio-indication of nitrogen responses in Calluna vulgaris heath communities. Metabolomics 1: 279–285CrossRefGoogle Scholar
  14. Gidman E.A., Stevens C.J., Goodacre R., Broadhurst D., Emmett B., Gwynn-Jones D. (2006) Using Metabolic Fingerprinting Of Plants For Evaluating Nitrogen Deposition Impacts On The Landscape Level. Glob. Change Biol. 12: 1460–1465CrossRefGoogle Scholar
  15. Goodacre R., Timmins E.M., Burton R. et al., (1998) Rapid.identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology 144: 1157–1170PubMedGoogle Scholar
  16. Goldberg E.D. (1975) The mussel watch–a first step in global marine monitoring. Mar. Pollut. Bull. 6: 111CrossRefGoogle Scholar
  17. Goldberg E.D., Bowen V.T, Farrington J.W. (1978) The Mussel Watch. Environ. Conserv. 5: 101–125CrossRefGoogle Scholar
  18. Goldberg E.D. (1986) The Mussel Watch concept. Environ. Monit. Assess. 7: 91–103CrossRefGoogle Scholar
  19. Gorinstein S., Moncheva S., Toledo F. et al., (2006) Relationship between seawater pollution and qualitiative changes in the extracted proteins from mussels Mytilus galloprovincialis. Sci. Total Environ. 364: 251–259PubMedCrossRefGoogle Scholar
  20. Hagger J.A., Depledge M.H., Galloway T.S. (2005) Toxicity of tributyltin in the marine mollusc Mytilus edulis. Mar. Pollut. Bull. 51: 811–816PubMedCrossRefGoogle Scholar
  21. Harding J.M., Couturier C., Parsons G.J., Ross N.W. (2004) Evaluation of the neutral red retention assay as a stress response indicator in cultivated mussels (Mytilus spp.) in relation to seasonal and environmental conditions. J. Shellfish Res. 23: 745–751Google Scholar
  22. Harvell C.D., Kim K., Burkholder J.M. et al., (1999) Emerging marine diseases–Climate links and anthropogenic factors. Science 285: 1505–1510PubMedCrossRefGoogle Scholar
  23. Harvell C.D., Mitchell C.E., Ward J.R. et al., (2002) Climate warning and disease risks for terrestrial and marine biota. Science 29: 2158–2162CrossRefGoogle Scholar
  24. Hazel G., Bucholtz F., Aggarwal I.D., Nau G., Ewing K.J. (1997) Multivariate analysis of mid-IR FT-IR spectra of hydrocarbon-contaminated wet soils. Appl. Spectrosc. 51: 984–989CrossRefGoogle Scholar
  25. Janik L.J., Skjemstad J.O., Merry R.H. (1998) Can mid infrared diffuse reflectance analysis replace soil extractions? Aust. J. Exp. Agr. 38: 681–696CrossRefGoogle Scholar
  26. Johnson H.E., Broadhurst D., Goodacre R., Smith A.R. (2003) Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry 62: 919-928PubMedCrossRefGoogle Scholar
  27. Jolliffe I.T. (1986). Principal component analysis. Springer Verlag, New YorkGoogle Scholar
  28. Knap A. Dewailly É., Furgal C. et al., (2002) Indicators of ocean health and human health: developing a research and monitoring framework. Environ. Health Perspect. 110: 839–845CrossRefGoogle Scholar
  29. Long S.M., Ryder K.J., Holdway D.A. (2003) The use of respiratrory enzymes as biomarkers of petroleum hydrocarbon exposure in Mytilus edulis planulatus. Ecotox. Environ. Safe 55: 261–270CrossRefGoogle Scholar
  30. Malham S.K., Lacoste A., Gelebart F., Jalabert F., Cueff A., Poulet S.A. (2003) Evidence for a direct link between stress and immunity in the mollusc Haliotis tuberculata. J. Exp. Zool. 295: 136–144CrossRefGoogle Scholar
  31. Martens H., Næs T. (1989). Multivariate Calibration. John Wiley & Sons, UKGoogle Scholar
  32. Meeuwig J.J. (1999) Predicting coastal eutrophication from land-use: an empirical approach to small non-stratified estuaries. Mar. Ecol. Prog. Ser. 176: 231–241CrossRefGoogle Scholar
  33. Niemi G.J., McDonald M.E. (2004) Application of ecological indicators. Ann. Rev. Ecol. Evol. Syst. 35: 89–111CrossRefGoogle Scholar
  34. Oliver L.M., Fisher W.S. (1999) Appraisal of prospective bivalve immunomarkers. Biomarkers 4: 510–530CrossRefGoogle Scholar
  35. Paerl H.W (2006) Assessing and managing nutrient-enhanced eutrophication in estuarine and coastal waters: interactive effects of human and climatic perturbations. Ecol. Eng. 26: 40–54CrossRefGoogle Scholar
  36. Pfeifer S., Schiedek D., Dippner J.W. (2005) Effect of temperature and salinity on acetylcholinesterase activity, a common pollution biomarker, in Mytilus sp from the south-western Baltic Sea. J. Exp. Mar. Biol. Ecol. 320: 93–103CrossRefGoogle Scholar
  37. Pipe R.K., Coles J.K., Farley S.R. (1995). Assays for measuring immune response in the mussel Mytilus edulis. In: Stolen J.S., Fletcher T.C., Smith S.A., Zelikoff J.T. et al. (Eds), Techniques in fish immunology-4. SOS Publications, USA pp. 93–100Google Scholar
  38. Rao C.R. (1951) An asymptotic expansion of the distribution of Wilks’ Criterion. Bull. Int. Stat. Inst. 33: 177–180Google Scholar
  39. Seed R. (1992) Systematics, evolution and distribution of mussels belonging to the genus Mytilus–An overview. Am. Malacol. Bull. 9: 123–137Google Scholar
  40. Seed R., Suchanek T.H. (1992). Population and community ecology of Mytilus. In: E. Gosling (Eds) The Mussel Mytilus: Ecology, Physiology, Genetics and Culture. Elsevier, Amsterdam, pp. 87–157Google Scholar
  41. Seed R. (1996) Patterns of biodiversity in the macro-invertebrate fauna associated with mussel patches on rocky shores. J. Mar. Biolog. Assoc. U.K. 76: 203–210CrossRefGoogle Scholar
  42. Seed, R., Richardson, C.A., and Smith, K. (2000). Marine mussels, their evolutionary success, ecological significance and use as chronometers of environmental change. In The Evolutionary Biology of the Bivalvia. Geological Society of London Special Publication, pp. 465–478Google Scholar
  43. Soazig L., Marc L. (2003) Potential use of the levels of the mRNA of a specific metallothionein isoform (MT-20) in mussel (Mytilus edulis) as a biomarker of cadmium contamination. Mar. Pollut. Bull. 46: 1450–1455PubMedCrossRefGoogle Scholar
  44. Van den Berg R.A., Hoefsloot H.C.J., Westerhuis J.A., Smilde A.K., ven der Werf M.J. (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7: 142–156PubMedCrossRefGoogle Scholar
  45. Widdows J., Donkin P. (1992). Mussels and environmental contaminants: Bioaccumulation and physiological aspects. In: Gosling E.M. (Eds) Developments in Aquaculture and Fisheries Science, Vol. 25: The Mussel Mytilus: Ecology, Physiology, Genetics and Culture. Elsevier, Amsterdam, pp. 383–424Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Eleanor A. Gidman
    • 1
  • M. Laurence M. Jones
    • 2
  • James A. Bussell
    • 3
  • Shelagh K. Malham
    • 3
  • Brian Reynolds
    • 2
  • Ray Seed
    • 3
  • David R. Causton
    • 1
  • Helen E. Johnson
    • 4
  • Dylan Gwynn-Jones
    • 1
  1. 1.Institute of Biological Sciences, Trophic Interaction Facility, Cledwyn BuildingThe University of Wales AberystwythCeredigionUK
  2. 2.Centre for Ecology and HydrologyGwyneddUK
  3. 3.School of Ocean Sciences (Centre for Applied Marine Science)University of WalesAngleseyUK
  4. 4.Faculty of Life SciencesUniversity of ManchesterManchesterUK

Personalised recommendations