Metabolomics

, Volume 3, Issue 4, pp 427–437

Comparison of human axillary odour profiles obtained by gas chromatography/mass spectrometry and skin microbial profiles obtained by denaturing gradient gel electrophoresis using multivariate pattern recognition

  • Yun Xu
  • Sarah J. Dixon
  • Richard G. Brereton
  • Helena A. Soini
  • Milos V. Novotny
  • Karlheinz Trebesius
  • Ingrid Bergmaier
  • Elisabeth Oberzaucher
  • Karl Grammer
  • Dustin J. Penn
Article

Abstract

Several studies have shown that microbial action is responsible for many compounds responsible for human odour. In this paper, we compare the pattern of microbial profiles and that of chemical profiles of human axillary odour by using multivariate pattern matching techniques. Approximately 200 subjects from Carinthia, Austria, participated in the study. The microbial profiles were represented by denaturing gradient gel electrophoresis (DGGE) analysis and the axillary odour profiles were determined in the sweat samples collected by a stir-bar sampling device and analysed by gas chromatography/mass spectrometry (GC/MS). Both qualitative and quantitative distance metrics were used to construct dissimilarity matrices between samples which were then used to represent the patterns of these two types of profiles. The distance matrices were then compared by using the Mantel test and the Procrustean test. The results show that on the overall dataset there is no strong correlation between microbial and chemical profiles. When the data are split into family groups, correlations vary according to family with a range of estimated p values from 0.00 to 0.90 that the null hypothesis (no correlation) holds. When 32 subjects who followed four basic rules of behaviour were selected, the estimated p-values are 0.00 using qualitative and <0.01 using quantitative distance metrics, suggesting excellent evidence that there is a connection between the microbial and chemical signature.

Keywords

multivariate pattern comparison human odour profile human microbial profile gas chromatography/mass spectrometry denaturing gradient gel electrophoresis 

References

  1. Brereton R.G. (2003) Chemometrics: Data Analysis for the Laboratory and Chemical Plant. Wiley, ChichesterGoogle Scholar
  2. Box G.E.P., Cox D.R. (1964) An analysis of transformations. J. R. Stat. Soc. B, 26:211–252Google Scholar
  3. Dixon, S.J., Brereton, R.G., Soini, H.A., Novotny, M.V. and Penn D.J. (2006). An automated method for peak detection and alignment in gas chromatography-mass spectrometry as applied to a large metabolomic dataset from human sweat. J. Chemomet. in pressGoogle Scholar
  4. Gentle J.E. (1998) Numerical Linear Algebra for Applications in Statistics. Springer-Verlag, BerlinGoogle Scholar
  5. Golub G.H., Loan C.F.V. (1996) Matrix Computations. The Johns Hopkins University Press, LondonGoogle Scholar
  6. Gower J.C. (1966) Some distance properties of latent root and vector methods used in multivariate analysis Biometrika 53:325–338Google Scholar
  7. Gower D.B., Bird S., Sharma P., House F.R. (1985) Axillary 5α-androst-16-en-3-one in men and women: Relationships with olfactory activity to odorous 16-androstenes Cell. Mol. Life Sci. 41:1134–1136CrossRefGoogle Scholar
  8. Gower J.C., Legendre P. (1986) Metric and Euclidean properties of dissimilarity coefficients, J. Classif. 3, 5–48CrossRefGoogle Scholar
  9. Graepel T., Herbrich R., Bollmann-Sdorra P., Obermayer K. (1998) Classification on pairwise proximity data. In: Jordan MI, Kearns MJ, Solla SA (Eds) Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems. MIT Press, Cambridge, MA, pp 438–444Google Scholar
  10. Huber W., von Heydebrek A., Sültmann H., Poustka A., Vingron M. (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression, Bioinformatics, 18(suppl. 1):S96–S104PubMedGoogle Scholar
  11. Jaccard, P. (1908). Bull. Soc. Vaud. Sci. Nat. 44, 223–270Google Scholar
  12. Jackson D.A. (1995) Protest: A Procrustean randomization test of community environment concordance. Ecoscience 2:297–303Google Scholar
  13. Krzanowski W.J., Marrior F.H.C. (1994) Multivariate Analysis, Part I. Distributions, Ordination and Inference. Arnold, LondonGoogle Scholar
  14. Mantel N.A. (1967) The detection of disease clustering and a generalized regression approach. Can. Res. 27:209–220Google Scholar
  15. Marples M.J. (1969) Life on the human skin. Sci. Am. 220:108–115PubMedCrossRefGoogle Scholar
  16. Muyzer G., de Waal E.C., Uitterlinden A.G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl. Environ. Microbiol. 59:695–700PubMedGoogle Scholar
  17. Muyzer G., Hottenträger S., Teske A., Wawer C. (1995) Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA: A new molecular approach to analyse the genetic diversity of mixed microbial communities. In: Akkermans A.D., van Elsas J.D., de Bruijin F.J. (Eds) Molecular Microbial Ecology Manual. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 1–23Google Scholar
  18. Pekalska E., Paclik P., Duin R.P.W. (2002) A generalized Kernel approach to dissimilarity-based classification, J. Mach. Learn. Res. 2:175–221CrossRefGoogle Scholar
  19. Penn D.J., Oberzaucher E., Grammer K., Fischer G., Soini H.A., Wiesler D., Novotny M.V., Dixon S.J., Xu Y., Brereton R.G. (2007) Individual and gender fingerprints in body odour, J. R. Soc.: Interface, 4:331–340CrossRefGoogle Scholar
  20. Peres-Neto P.R., Jackson D.A. (2001) How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test, Oecologia 129:169–178CrossRefGoogle Scholar
  21. Rennie P.J., Gower D.B., Holland K.T., Mallet A.I., Watkins W.J. (1990) The skin microflora and the formation of human axillary odour. Int. J. Cosmet. Sci. 12:197–208CrossRefPubMedGoogle Scholar
  22. Rennie P.J., Gower D.B., Holland K.T. (1991) In-vitro and in-vivo studies of human axillary odour and the cutaneous microflora Br. J. Dermatol. 124:596–602PubMedCrossRefGoogle Scholar
  23. Rodrìguez-Lázaro D.A., Jofré T., Aymerich M., Hugas M., Pla M. (2004) Rapid quantitative detection of Listeria monocytogenes by Real-Time PCR. Appl. Environ. Microbiol. 70:6299–6301PubMedCrossRefGoogle Scholar
  24. Rohlf F.J., Slice D.E. (1990) Extensions of the Procrustes method of the optimal superimposition of landmarks. Syst. Zool. 39:40–59CrossRefGoogle Scholar
  25. Sanguinetti C.J., Dias Neto E., Simpson A.J.G. (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels, Biotechniques 17:915–919Google Scholar
  26. Sastry S.D., Buck K.T., Janak, J., Dressler M., Preti G. (1980) Volatiles emitted by humans. Waller G.R., Dermer O.C. (Eds) Biochemical Applications of Mass Spectrometry John Wiley & Sons, New York, pp 1085–1129Google Scholar
  27. Sato K., Leidal R., Sato F. (1987) Morphology and development of an apoeccrine sweat gland in human axillae. Am. J. Physiol. Regul. Integr. Comp. Physiol. 252:R166–180Google Scholar
  28. Soini H.A., Bruce K.E., Klouckova I., Brereton R.G., Penn D.J., Novotny M.V. (2006) In-situ surface sampling of biological objects and preconcentration of their volatiles for chromatographic analysis. Anal. Chem. 78:7161–7168PubMedCrossRefGoogle Scholar
  29. Wold S., Esbensen K., Geladi P. (1987) Principal component analysis, Chemom. Intell. Lab. Syst. 2:37–52CrossRefGoogle Scholar
  30. Williamson P., Kligman A.M. (1965) A new method for the quantitative investigation of cutaneous bacteria, J. Invest. Dermatol. 45:498–503PubMedCrossRefGoogle Scholar
  31. Zwillinger D. (1997) Handbook of Differential Equations, 3rd edition. Academic Press, BostonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yun Xu
    • 1
  • Sarah J. Dixon
    • 1
  • Richard G. Brereton
    • 1
  • Helena A. Soini
    • 2
  • Milos V. Novotny
    • 2
  • Karlheinz Trebesius
    • 3
  • Ingrid Bergmaier
    • 3
  • Elisabeth Oberzaucher
    • 4
  • Karl Grammer
    • 4
  • Dustin J. Penn
    • 5
  1. 1.Centre for Chemometrics, School of ChemistryUniversity of BristolBristolUK
  2. 2.Institute for Pheromone Research and Department of ChemistryIndiana UniversityBloomingtonUSA
  3. 3.Vermicon AGMunichGermany
  4. 4.Department for AnthropologyLudwig Boltzmann Institute for Urban EthologyViennaAustria
  5. 5.Konrad Lorenz Institute for EthologyAustrian Academy of SciencesViennaAustria

Personalised recommendations