Metabolomics

, Volume 2, Issue 4, pp 197–219

Profiling of phenolic glycosidic conjugates in leaves of Arabidopsis thaliana using LC/MS

  • M. Stobiecki
  • A. Skirycz
  • L. Kerhoas
  • P. Kachlicki
  • D. Muth
  • J. Einhorn
  • B. Mueller-Roeber
Article

Abstract

Profiling of plant secondary metabolites is still a very difficult task. Liquid chromatography (LC) or capillary electrophoresis hyphenated with different kinds of detectors are methods of choice for analysis of polar, thermo labile compounds with high molecular masses. We demonstrate the applicability of LC combined with UV diode array or/and mass spectrometric detectors for the unambiguous identification and quantification of flavonoid conjugates isolated from Arabidopsis thaliana leaves of different genotypes and grown in different environmental conditions. During LC/UV/MS/MS analyses we were able to identify tetra-, tri-, and di-glycosides of kaempferol, quercetin and isorhamnetin. Based on our results we can conclude that due to the co-elution of different chemical compounds in reversed phase HPLC systems the application of UV detectors does not allow to precisely profile all flavonoid conjugates existing in A. thaliana genotypes. Using MS detection it was possible to unambiguously recognize the glycosylation patterns of the aglycones. However, from the mass spectra we could not conclude neither the anomeric form of the C-1 carbon atoms of sugar moieties in glycosidic bonds between sugars or sugar and aglycone nor the position of the second carbon involved in disaccharides. The applicability of collision induced dissociation techniques (CID MS/MS) for structural analyses of the studied group of plant secondary metabolites with two types of analyzers (triple quadrupole or ion trap) was demonstrated.

Keywords

liquid chromatography-mass spectrometry metabolite profiling metabolomics flavonoid glycosides 

References

  1. Ablajan K., Abliz Z., Shang X-Y., He J.-M., Zhang R.-P., Shi J.-G. (2006). Structural characterization of flavonol 3,7 di-O-glycosides and determination of the glycosylation position by using negative ion electrospray ionization mass spectrometry. J. Mass spectrum. 41: 352–360CrossRefGoogle Scholar
  2. Aguilar-Sanchez R., Ahuatl-Garcia F., Davila-Jimenez M.M., Elizalde-Gonzalez M.P., Guevara-Villa M.R.G. (2005). Chromatographic and electrochemical determination of quercetin and kaempferol in phytopharmaceuticals. J. Pharm. Biomed. Anal. 38:239–249PubMedCrossRefGoogle Scholar
  3. Bloor S.J., Abrahams S. (2002). The structure of the major anthocyanin in Arabidopsis thaliana. Phytochemistry 59: 343–346PubMedCrossRefGoogle Scholar
  4. BuerC.S., Muday G.K. (2004). The transparent testa4 mutation prevents flavonoids synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell 16: 1191–1205PubMedCrossRefGoogle Scholar
  5. Cuyckens F., Claeys M. (2004). Mass spectrometry in structural analysis of flavonoids. J. Mass Spectrom. 39: 1–15PubMedCrossRefGoogle Scholar
  6. Cuyckens F., Claeys M. (2005). Determination of the glycosylation site in flavonoid mono-O-glycosides by collision-induced dissociation of electrospray-generated deprotonated and sodiated molecules. J. Mass Spectrom. 40: 364–372PubMedCrossRefGoogle Scholar
  7. D’Auria J.C., Gershenzon J. (2005). The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr. Opin. Plant Biol. 8: 308–316PubMedCrossRefGoogle Scholar
  8. de Rijke E., Zappey H., Ariese F., Gooijer C., Brinkman U.A.T. (2003). Liquid chromatography with atmospheric pressure chemical ionization and electrospray ionization mass spectrometry of flavonoids with triple-quadrupole and ion-trap instruments. J. Chromatogr. A 984: 45–58PubMedCrossRefGoogle Scholar
  9. de Rijke E., Zappey H., Ariese F., Gooijer C., Brinkman U.A.T. (2004). Flavonoids in Leguminosae: Analysis of extracts of T. pratense L., T. dubium L., T. repens L., and L. corniculatus L. leaves using liquid chromatography with UV, mass spectrometric and fluorescence detection. Anal. Bioanal. Chem. 378: 995–1006PubMedCrossRefGoogle Scholar
  10. Dixon R.A., Paiva N.L. (1995). Stress-induced phenylpropanoid metabolism. Plant Cell 7: 1085–1097PubMedCrossRefGoogle Scholar
  11. Dixon R.A., Steel C.L. (1999). Flavonoids and isoflavonoids – a gold mine for metabolic engineering. Trends Plant Sci. 4: 394–400PubMedCrossRefGoogle Scholar
  12. Dixon R.A., Strack D. (2003). Phytochemistry meets genome analysis and beyond. Phytochemistry 62: 815–816PubMedCrossRefGoogle Scholar
  13. Domon B., Costello C.E. (1988). A systematic nomenclature for carbohydrate fragmentations in FAB MS/MS spectra of glycoconjugates. Glycoconj. J. 5: 397–409CrossRefGoogle Scholar
  14. Fernie A.R., Trethewey R.N., Krotzky A.J., Willmitzer L. (2004). Metabolite profiling: from diagnostic to systems biology. Nat. Rev. Mol. Cell Biol. 5: 763–769PubMedCrossRefGoogle Scholar
  15. Graham T.L. (1998). Flavonoid and flavonolglycoside metabolism in Arabidopsis. Plant Physiol. Biochem. 36: 135–144CrossRefGoogle Scholar
  16. Harborne J.B.,, Williams C.A. (2000). Advances in flavonoids research since 1992. Phytochemistry 55: 481–504PubMedCrossRefGoogle Scholar
  17. Hvattum E., Ekeberg D. (2003). Study of the collision-induced radical cleavage of flavonoid glycosides using negative electrospray ionization tandem quadrupole mass spectrometry. J. Mass Spectrom. 38: 43–49PubMedCrossRefGoogle Scholar
  18. Jennings K.R. (1996). MS/MS instrumentation. In: Newton R.P., Walton T.J. (eds), Applications of Modern Mass Spectrometry in Plant Sciences. Clarendon Press, Oxford, pp. 25–43Google Scholar
  19. Jones P., Messner B., Nakajima J.-I., Schaffner A.R., Saito K. (2003). UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. J. Biol. Chem. 278: 43910–43918PubMedCrossRefGoogle Scholar
  20. Justesen U., Knuthesen P., Leth T. (1998). Quantitative analysis of flavonols, flavones and flavanones in fruits vegetables and beverages by high-performance liquid chromatography with photodiode array and mass spectrometric detection. J. Chromatogr. A 799: 101–110PubMedCrossRefGoogle Scholar
  21. Kachlicki P., Marczak Ł., Kerhoas L., Einhorn J., Stobiecki M. (2005). Profiling isoflavone conjugates in root extracts of lupine species with LC/ESI/MSn systems. J. Mass Spectrom. 40: 1088–1103PubMedCrossRefGoogle Scholar
  22. Kerhoas, L., Aouak, D., Cingöz, A., Routaboul, J.-M., Lepiniec, L., Einhorn, J. and Birlirakis, N. Structural characterization of the major flavonoid glycosides from Arabidopsis thaliana seeds. J. Agric. Food Chem. (accepted).Google Scholar
  23. Kliebenstein D.J., Rowe H.C., Denby K.J. (2005). Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. Plant J. 44: 25–36PubMedCrossRefGoogle Scholar
  24. Laundry L.G., Chapple C.C.S.,, Last R. (1995). Arabidopsis mutants lacking phenolic sun screens exhibit enhanced ultraviolet-B injury oxidative damage. Plant Physiol. 109: 1159–1166CrossRefGoogle Scholar
  25. Lee J.S., Kim D.H., Liu K.H., Oh T.K., Lee C.H. (2005). Identification of flavonoids using liquid chromatography with electrospray ionization and ion trap tandem mass spectrometry with an MS/MS library. Rapid Commun. Mass Spectrom. 19: 3539–3548PubMedCrossRefGoogle Scholar
  26. Le Gall G., DuPont M.S., Mellon F.A., Davis A.L., Collins G.J., Verhoyen M.E., Colquhoun I.J. (2003). Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits. J. Agric. Food Chem. 51: 2438–2446PubMedCrossRefGoogle Scholar
  27. Le Gall G., Metzdorff S.B., Pedersen J., Bennett R.N. and Colquhoun I.J. (2005) Metabolite profiling of Arabidopsis thaliana (L.) plants transformed with an antisense chalcone synthase gene. Metabolomics 1: 181–197CrossRefGoogle Scholar
  28. Ma Y.-L., Vadernikova L., Van den Heuvel H.,, Claeys M. (2000). Internal glucose residue loss in protonated O-diglycosyl flavonoids upon low-energy collision-induced dissociation. J. Am. Soc. Mass Spectrom. 11: 136–144PubMedCrossRefGoogle Scholar
  29. March R.E., Miao X.-S., Metcalfe C.D., Stobiecki M., Marczak Ł. (2004). A fragmentation study of an isoflavone glycoside genistein-7-O-glucoside, using quadrupole time of flight mass spectrometry at high mass resolution. Intern. J. Mass Spectrom. 232: 171–183CrossRefGoogle Scholar
  30. Mehrtens F., Kranz H., Bednarek P., Weisshaar B. (2005). The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol. 138:1083–1096PubMedCrossRefGoogle Scholar
  31. Nair R.B., Bastress K.L., Ruegger M.O., Denault J.W., Chapple C. (2004). The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell 16: 544–554PubMedCrossRefGoogle Scholar
  32. Niessen W.M.A. (1999). Liquid Chromatography – Mass Spectrometry, Second Edition. Marcel Dekker Inc., New YorkGoogle Scholar
  33. Pelletier, M.K., Burbulis I.E., Winkel-Shirley B. (1999). Disruption of specific flavonoid genes enhances the accumulation of flavonoid enzymes and end-products. Plant Mol. Biol. 40: 45–54PubMedCrossRefGoogle Scholar
  34. Pietta P.G. (2000). Flavonoids as antioxidants. J. Nat. Prod. 63:1035–1042PubMedCrossRefGoogle Scholar
  35. Pourcel L., Routaboul J-M., Kerhoas L., Caboche M., Lepiniec L. (2005). TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell 17: 2966–2980PubMedCrossRefGoogle Scholar
  36. Prasain J.K., Wang C-C., Barnes S. (2004). Mass spectrometric methods for the determination of flavonoids in biological samples. Free Radic. Biol. Med. 37: 1324–1350PubMedCrossRefGoogle Scholar
  37. Roessner U., Willmitzer L., Fernie A.R. (2001). High-resolution metabolic phenotyping of genetically and environmentally diverse potato tuber systems. Identification of phenocopies. Plant Physiol. 127: 749–764PubMedCrossRefGoogle Scholar
  38. Rogers L.A., Dubos C., Surman C., Willment J., Cullis I.F., Mansfield S.D.,, Campbell M.M. (2005). Comparison of lignin deposition in three ectopic lignification mutants. New Phytol. 168:123–140PubMedCrossRefGoogle Scholar
  39. Routaboul, J-M., Kerhoas, L., Debeaujon, I., Pourcel, L., Caboche, M., Einhorn, J. and Lepiniec L. (2006). Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta 224, 96–107.PubMedCrossRefGoogle Scholar
  40. Simeon N., Myers R., Bayle C., Nertz M., Stewart J.K., Couderc F. (2001). Some applications of near-ultraviolet laser-induced fluorescence detection in nanomolar- and subnanomolar-range high-performance liquid chromatography or micro-high-performance liquid chromatography. J. Chromatogr. A. 973: 253–259CrossRefGoogle Scholar
  41. Stafford H. (1990). Flavonoid metabolism. CRC Press Inc, Boca RatonGoogle Scholar
  42. Stobiecki M. (2000). Review – Application of mass spectrometry for identification and structural studies of flavonoid glycosides. Phytochemistry 54: 237–256PubMedCrossRefGoogle Scholar
  43. Stobiecki M., Kachlicki P. (2005). Metabolomics and metabolite profiling – can we achieve the goal? Acta Physiol. Plant. 27: 109–116CrossRefGoogle Scholar
  44. Stobiecki M., Kachlicki P. (2006). Isolation and identification of flavonoids. In: Grotevold E. (eds), The Science of Flavonoids. Springer Science and Business Media, New York, pp. 47–69Google Scholar
  45. Sumner L.W., Mendes P., Dixon R.A. (2003). Plant metabolomics: large-scale phytochemistry in the functional genomics era, Phytochemistry 62: 817–836PubMedCrossRefGoogle Scholar
  46. Taylor L.P., Grotewold E. (2005). Flavonoids as developmental regulators. Curr. Opin. Plant Biol. 8: 317–323PubMedCrossRefGoogle Scholar
  47. Tohge T., Nishiyama Y., Hirai M.Y., Yano M., Nakajima J.-I., Awazuhara M., Inoue E., Takahashi H., Goodenowe D.B., Kitayama M., Noji M., Yamazaki M., Saito K. (2005). Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J. 42: 218–235PubMedCrossRefGoogle Scholar
  48. Van Etten H.D., MansfieldJ.W., Bailey J.A., Farmer E.E. (1994). Two classes of plan antibiotics: phytoalexins versus phytoanticipines. Plant Cell 6: 1191–1192CrossRefGoogle Scholar
  49. Veit M., Pauli G.F. (1999). Major flavonoids from Arabidopsis thaliana leaves. J. Nat. Prod. 62: 1301–1303PubMedCrossRefGoogle Scholar
  50. Verpoorte R., Memelink J. (2002). Engineering secondary metabolite production in plants. Curr. Opin. Biotechnol. 13:181–187PubMedCrossRefGoogle Scholar
  51. von Roepenack-Lahaye E., Degenkolb T., Zerjeski M., Franz M., Roth U., Wessjohann L., Schmidt J., Scheel D., Clemens S. (2004). Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry. Plant Physiol. 134: 548–599CrossRefGoogle Scholar
  52. Waridel P., Wolfender J-L., Ndjoko K., Hobby K.R., Major H.J., Hostettmann K. (2001). Evaluation of quadrupole time of flight tandem mass spectrometry and ion trap multiple-stage mass spectrometry for differentiation of C-glycosidic flavonoid isomers. J. Chromatogr. A 926: 29–41PubMedCrossRefGoogle Scholar
  53. Zhang J.M., Brodbelt J.S. (2005). Silver complexation and tandem mass spectrometry for differentiation of isomeric flavonoid diglycosides. Anal. Chem. 77: 1761–1770PubMedCrossRefGoogle Scholar
  54. Zhang J.M., Wang J.M., Brodbelt J.S. (2005). Characterization of flavonoids by aluminum complexation and collisionally activated dissociation. J. Mass Spectrom. 40: 350–363PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • M. Stobiecki
    • 1
  • A. Skirycz
    • 2
    • 5
  • L. Kerhoas
    • 3
  • P. Kachlicki
    • 4
  • D. Muth
    • 1
  • J. Einhorn
    • 3
  • B. Mueller-Roeber
    • 2
    • 5
  1. 1.Institute of Bioorganic Chemistry PASPoznańPoland
  2. 2.University of PotsdamGolmGermany
  3. 3.Institut National de la Recherche AgronomiqueVersaille CedexFrance
  4. 4.Institute of Plant Genetics PASPoznańPoland
  5. 5.MPI of Molecular Plant PhysiologyGolmGermany

Personalised recommendations