Metabolomics

, Volume 1, Issue 2, pp 137–148 | Cite as

Evaluation of automated electrospray-TOF mass spectrometryfor metabolic fingerprinting of the plant metabolome

Article

Metabolic fingerprinting is increasingly employed in microbial and plant metabolomics. Identification and evaluation of analytical factors that influence mass spectra produced with automated electrospray time of flight mass spectrometry to support metabolic fingerprinting are described. Instrument resolution of 4000 (FWHM) at mass 200 Da provided detection of ions of the same nominal mass but different monoisotopic masses. Complex mass spectra were obtained from polar extracts of tomato fruit in positive and negative ion mode. These spectra consist of metabolite ions (molecular, adduct and fragment) and those derived from the extraction medium, largely in the form of [M+H]+, [M−H], [M+Na]+, [M+K]+, [2M+H]+, [M+Cl] and [2M−H]. Ionisation suppression reduced sensitivity, although its effect was consistent for a wide range of metabolite concentrations. Variability in ion signal intensity was lower in analytical (2.2–30.1%) compared to biological (within fruit 9.6–27.6%; between-fruit 13.2–34.4%) replicates. The method is applicable to high throughput metabolic fingerprinting and, with accurate mass measurements, is able to provide reductions in data complexity and preliminary identification of metabolites.

Keywords:

L. esculentum L. pennellii Electrospray Time-of-Flight Mass Spectrometry (ES-TOF-MS) metabolic fingerprinting metabolomics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharoni, A., RicDe Vos, C.H., Verhoeven, H.A., Maliepaard, C.A., Kruppa, G., Bino, R., Goodenowe, D.B. 2002Nontargeted metabolome Analysis by Use of Fourier Transform Ion Cyclotron Mass SpectrometryOMICS6217234CrossRefPubMedGoogle Scholar
  2. Allen, J., Davey, H.M., Broadhurst, D., Heald, J.K., Rowland, J.J., Oliver, S.G., Kell, D.B. 2003High-throughput classification of yeast mutants for functional genomics using metabolic footprintingNat. Biotechnol.21692696CrossRefPubMedGoogle Scholar
  3. Bino, R.J., Hall, R.D., Fiehn, O., Kopka, J., Saito, K., Draper, J., Nikolau, B.J., Mendes, P., Roessner-Tunali, U., Beale, M.H., Trethewey, R.N., Lange, B.M., Wurtele, E.S., Sumner, L.W. 2004Potential of metabolomics as a functional genomics toolTrends Plant Sci.9418425CrossRefPubMedGoogle Scholar
  4. Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., Aach, J., Ansorge, W., Ball, C.A., Causton, H.C., Gaasterland, T., Glenisson, P., Holstege, F.C.P., Kim, I.F., Markowitz, V., Matese, J.C., Parkinson, H., Robinson, A., Sarkans, U., Schulze-Kremer, S., Stewart, J., Taylor, R., Vilo, J., Vingron, M. 2001Minimum information about a microarray experiment (MIAME) - toward standards for microarray dataNat. Genet.29365371CrossRefPubMedGoogle Scholar
  5. Brown, S.C., Kruppa, G., Dasseux, J-L 2005Metabolomics applications of FT-ICR mass spectrometryMass Spectrom. Rev.24223231CrossRefPubMedGoogle Scholar
  6. Carpenter, K.H., Wilcken, B. 1999Neonatal diagnosis of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency and implications for newborn screening by tandem mass spectrometryJ. Inherit. Metab. Dis.22840841CrossRefPubMedGoogle Scholar
  7. Chace, D.H., DiPerna, J.C., Kalas, T.A., Johnson, R.W., Naylor, E.W. 2001Rapid diagnosis of methylmalonic and propionic acidemias: Quantitative tandem mass spectrometric analysis of propionylcarnitine in filter-paper blood specimens obtained from newbornsClin. Chem.4720402044PubMedGoogle Scholar
  8. Chace, D.H., Kalas, T.A., Naylor, E.W. 2003Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newbornsClin. Chem.4917971817CrossRefPubMedGoogle Scholar
  9. Goodacre, R., Heald, J.K., Kell, D.B. 1999Characterisation of intact microorganisms using electrospray ionisation mass spectrometryFEMS Microbiol. Lett.1761724CrossRefGoogle Scholar
  10. Goodacre, R., Vaidyanathan, S., Bianchi, G., Kell, D.B. 2002Metabolic profiling using direct infusion electrospray ionisation mass spectrometry for the characterisation of olive oilsAnalyst12714571462CrossRefPubMedGoogle Scholar
  11. Goodacre, R., Vaidyanathan, S., Dunn, W.B., Harrigan, G.G., Kell, D.B. 2004Metabolomics by numbers: acquiring and understanding global metabolite dataTrends Biotechnol.22245252CrossRefPubMedGoogle Scholar
  12. Goodacre, R., York, E.V., Heald, J.K., Scott, I.M. 2003Chemometric discrimination of unfractionated plant extracts analyzed by electrospray mass spectrometryPhytochemistry62859863CrossRefPubMedGoogle Scholar
  13. Hansen, M.E., Smedsgaard, J. 2004A new matching algorithm for high resolution mass spectraJ. Am. Soc. Mass Spectrom.1511731180CrossRefPubMedGoogle Scholar
  14. Harrigan, G.G., Goodacre, R. 2003Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function AnalysisKluwer Academic PublishersLondonGoogle Scholar
  15. Jarvis, R.M., Goodacre, R. 2004Ultra-violet resonance Raman spectroscopy for the rapid discrimination of urinary tract infection bacteriaFEMS Microbiol. Lett.232127132CrossRefPubMedGoogle Scholar
  16. Jenkins, H., Hardy, N., Beckmann, M., Draper, J., Smith, A.R., Taylor, J., Fiehn, O., Goodacre, R., Bino, R.J., Hall, R., Kopka, J., Lane, G.A., Lange, B.M., Liu, J.R., Mendes, P., Nikolau, B.J., Oliver, S.G., Paton, N.W., Rhee, S., Roessner-Tunali, U., Saito, K., Smedsgaard, J., Sumner, L.W., Wang, T., Walsh, S., Wurtele, E.S., Kell, D.B. 2004A proposed framework for the description of plant metabolomics experiments and their resultsNat. Biotechnol.2216011606CrossRefPubMedGoogle Scholar
  17. Johnson, H.E., Broadhurst, D., Goodacre, R., Smith, A.R. 2003Metabolic fingerprinting of salt-stressed tomatoesPhytochemistry62919928CrossRefPubMedGoogle Scholar
  18. Kaderbhai, N.N., Broadhurst, D.I., Ellis, D.I., Goodacre, R., Kell, D.B. 2003Functional genomics via metabolic footprinting: monitoring metabolite secretion by Escherichia coli tryptophan metabolism mutants using FT-IR and direct injection electrospray mass spectrometryComp. Funct. Genom.4376391CrossRefGoogle Scholar
  19. King, R., Bonfiglio, R., Fernandez-Metzler, C., Miller-Stein, C., Olah, T. 2000Mechanistic investigation of ionization suppression in electrospray ionizationJ. Am. Soc. Mass Spectrom.11942950CrossRefPubMedGoogle Scholar
  20. Kristal, B.S., Vigneau-Callahan, K.E., Matson, W.R. 1998Simultaneous analysis of the majority of low-molecular-weight, redox-active compounds from mitochondriaAnal. Biochem.2631825CrossRefPubMedGoogle Scholar
  21. Lindon, J.C., Nicholson, J.K., Holmes, E., Everett, J.R. 2000Metabonomics: Metabolic processes studied by NMR spectroscopy of biofluidsConcepts Magn. Reson.12289320CrossRefGoogle Scholar
  22. Mauri, P., Pietta, P. 2000Electrospray characterization of selected medicinal plant extractsJ. Pharmaceut. Biomed. Anal.236168CrossRefGoogle Scholar
  23. O’Hagan, S., Dunn, W.B., Brown, M., Knowles, J., Kell, D.B. 2005Closed-loop, multiobjective optimisation of analytical instrumentation: gas-chromatography-time-of-flight mass spectrometry of the metabolomes of human serum and of yeast fermentationsAnal. Chem.77290303CrossRefPubMedGoogle Scholar
  24. Overy, S.A., Walker, H.J., Malone, S., Howard, T.P., Baxter, C.J., Sweetlove, L.J., Hill, S.A., Quick, W.P. 2005Application of metabolite profiling to the identification of traits in a population of tomato introgression linesJ. Exp. Bot.56287296CrossRefPubMedGoogle Scholar
  25. Plumb, R., Castro-Perez, J., Granger, J., Beattie, I., Joncour, K., Wright, A. 2004Ultra-performance liquid chromatography coupled to quadrupole-orthogonal time-of-flight mass spectrometryRapid Commun. Mass Spectrom.1823312337CrossRefPubMedGoogle Scholar
  26. Plumb, R., Granger, J., Stumpf, C., Wilson, I.D., Evans, J.A., Lenz, E.M. 2003Metabonomic analysis of mouse urine by liquid-chromatography- time of flight mass spectrometry (LC-TOFMS): detection of strain, diurnal and gender differencesAnalyst128819823CrossRefPubMedGoogle Scholar
  27. Rashed, M.S. 2001Clinical applications of tandem mass spectrometry: ten years of diagnosis and screening for inherited metabolic diseasesJ. Chromat. B-Anal. Technol. Biomed. Life Sci.7582748CrossRefGoogle Scholar
  28. Rashed, M.S., Ozand, P.T., Bennett, M.J., Barnard, J.J., Govindaraju, D.R., Rinaldo, P. 1995Inborn-Errors of Metabolism Diagnosed in Sudden-Death Cases by Acylcarnitine Analysis of Postmortem BileClin. Chem.4111091114PubMedGoogle Scholar
  29. Roessner, U., Wagner, C., Kopka, J., Trethewey, R.N., Willmitzer, L. 2000Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometryPlant J.23131142CrossRefPubMedGoogle Scholar
  30. Roessner-Tunali, U., Hegemann, B., Lytovchenko, A., Carrari, F., Bruedigam, C., Granot, D., Fernie, A.R. 2003Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit developmentPlant Physiol.1338499CrossRefPubMedGoogle Scholar
  31. Sawaya, A., Tomazela, D.M., Cunha, I.B.S., Bankova, V.S., Marcucci, M.C., Custodio, A.R., Eberlin, M.N. 2004Electrospray ionization mass spectrometry fingerprinting of propolisAnalyst129739744CrossRefPubMedGoogle Scholar
  32. Schroder, H.F. 1996Polar organic pollutants from textile industries in the wastewater treatment process - Biochemical and physico-chemical elimination and degradation monitoring by LC-MS, FIA-MS and MS- MSTrac-Trends Anal. Chem.15349362CrossRefGoogle Scholar
  33. Smedsgaard, J., Frisvad, J.C. 1996Using direct electrospray mass spectrometry in taxonomy and secondary metabolite profiling of crude fungal extractsJ. Microbiol. Methods25517CrossRefGoogle Scholar
  34. Soga, T., Ohashi, Y., Ueno, Y., Naraoka, H., Tomita, M., Nishioka, T. 2003Quantitative metabolome analysis using capillary electrophoresis mass spectrometryJ. Proteome Res.2488494CrossRefPubMedGoogle Scholar
  35. Solanky, K.S., Bailey, N.J.C., Beckwith-Hall, B.M., Davis, A., Bingham, S., Holmes, E., Nicholson, J.K., Cassidy, A. 2003Application of biofluid H-1 nuclear magnetic resonance-based metabonomic techniques for the analysis of the biochemical effects of dietary isoflavones on human plasma profileAnal. Biochem.323197204CrossRefPubMedGoogle Scholar
  36. Vaidyanathan, S., Kell, D.B., Goodacre, R. 2002Flow-injection electrospray ionization mass spectrometry of crude cell extracts for high-throughput bacterial identificationJ. Am. Soc. Mass Spectrom.13118128CrossRefPubMedGoogle Scholar
  37. Valle, E.M., Boggio, S.B., Heldt, H.W. 1998Free amino acid composition of phloem sap and growing fruit of Lycopersicon esculentumPlant Cell Physiol.39458461Google Scholar
  38. Viant, M.R., Rosenblum, E.S., Tjeerdema, R.S. 2003NMR-based metabolomics: A powerful approach for characterizing the effects of environmental stressors on organism healthEnviron. Sci. Technol.3749824989CrossRefPubMedGoogle Scholar
  39. Wagner, C., Sefkow, M., Kopka, J. 2003Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profilesPhytochemistry62887900CrossRefPubMedGoogle Scholar
  40. Wilson, I.D., Plumb, R., Granger, J., Major, H., Williams, R., Lenz, E.M. 2005HPLC-MS-based methods for the study of metabonomicsJ. Chromatogr. B-Anal. Technol. Biomed. Life Sci.8176776Google Scholar
  41. Wolff, J.C., Eckers, C., Sage, A.B., Giles, K., Bateman, R. 2001Accurate mass liquid chromatography/mass spectrometry on quadrupole orthogonal acceleration time-of flight mass analyzers using switching between separate sample and reference sprays. 2. Applications using the dual-electrospray ion sourceAnal. Chem.7326052612CrossRefPubMedGoogle Scholar
  42. Zahn, J.A., Higgs, R.E., Hilton, M.D. 2001Use of direct-infusion electrospray mass spectrometry to guide empirical development of improved conditions for expression of secondary metabolites from actinomycetesAppl. Environ. Microbiol.67377386CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of ManchesterManchesterUK
  2. 2.Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK

Personalised recommendations