Advertisement

Metabolomics

, Volume 1, Issue 1, pp 65–73 | Cite as

Comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (GC × GC-TOF) for high resolution metabolomics: biomarker discovery on spleen tissue extracts of obese NZO compared to lean C57BL/6 mice

  • Werner Welthagen
  • Robert A. Shellie
  • Joachim Spranger
  • Michael Ristow
  • Ralf Zimmermann
  • Oliver Fiehn
Article

Comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (GC × GC-TOF) was applied for the analysis of complex metabolite profiles from mouse spleen. The resulting two-dimensional chromatograms proved that mass spectral quality and sensitivity were largely improved by the enhanced resolution and zone compression, which are features of GC × GC operation, when compared to classical one-dimensional GC-TOF methods. The improved peak capacity of GC × GC allowed for peaks to be detected that could previously not be separated in one-dimensional GC. A measure of the combined power of chromatographic and mass spectral deconvolution resolution is called “analytical purity”, with higher values indicating less pure peaks. GC × GC-TOF lead to the detection of 1200 compounds with purity better than 0.2, compared to 500 compounds with purity up to 2.5 in one-dimensional GC-TOF. The compounds identified include many of the compounds previously reported in NMR studies and other methods on mammalian tissues. Spleen samples of several obese NZO mice and lean C57BL/6 control strains were analyzed in order to demonstrate the applicability of GC × GC-TOF for biomarker identification.

Key words

Obesity metabonomics metabolic profiling type 2 diabetes mellitus nutrigenomics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adami, H.O., Trichopoulos, D. 2003Obesity and mortality from cancerN. Engl. J. Med34816231624CrossRefPubMedGoogle Scholar
  2. Allen, J., Davey, H.M., Broadhurst, D. 2003High throughput classification of yeast mutants for functional genomics using metabolic footprintingNat. Biotechnol.21692696CrossRefPubMedGoogle Scholar
  3. Beens, J., Tijssen, R., Blomberg, J. 1998Comprehensive two-dimensional gas chromatography (GC × GC) as a diagnostic toolJ. High Resolut. Chromatogr216364CrossRefGoogle Scholar
  4. Cantley, L.C. 2002The phosphoinositide 3-kinase pathwayScience29616551657PubMedGoogle Scholar
  5. Dallüge, J., Stee, L.L.P., Xu, X.,  et al. 2002Unraveling the composition of very complex samples by comprehensive gas chromatography coupled to time-of-flight mass spectrometry, Cigarette smokeJ. Chromatogr. A974169184CrossRefPubMedGoogle Scholar
  6. Dallüge, J., Vreuls, R.J.J., Beens, J., Brinkman, U.A.T. 2002Optimization and characterization of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection (GC × GC-TOFMS)J. Sep. Sci25201214CrossRefGoogle Scholar
  7. Deursen, M.M., Beens, J., Janssen, H.-G., Leclercq, P.A., Cramers, C.A. 2000Evaluation of time of flight mass spectrometric detection for fast gas chromatographyJ. Chromatogr. A878205213CrossRefPubMedGoogle Scholar
  8. Fiehn, O. 2002Metabolomics – the link between genotype and phenotypePlant Mol. Biol.48155171Google Scholar
  9. Fiehn, O. 2003Metabolic networks of Cucurbita maxima phloemPhytochemistry62875886CrossRefPubMedGoogle Scholar
  10. Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R.N., Willmitzer, L. 2000Metabolite profiling for plant functional genomicsNat. Biotechnol.1811571161CrossRefPubMedGoogle Scholar
  11. Fiehn, O., Kopka, J., Trethewey, R.N., Willmitzer, L. 2000Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometryAnal. Chem.7235733580CrossRefPubMedGoogle Scholar
  12. Hirai, M.Y., Yano, M., Goodenowe, D.B. 2004Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thalianaProc. Natl. Acad. Sci. USA1011020510210CrossRefPubMedGoogle Scholar
  13. Keun, H.C., Beckonert, O., Griffin, J.L. 2002Cryogenic probe 13C NMR spectroscopy of urine for metabonomic studiesAnal. Chem.7445884593CrossRefPubMedGoogle Scholar
  14. Kristenson, E.M., Kortyár, P., Danielsson, C., Kallio, M., Brandt, M., Makela, J. 2003Evaluation of modulators and electron-capture detectors for comprehensive two-dimensional GC of halogenated organic compoundsJ. Chromatogr. A10196577CrossRefPubMedGoogle Scholar
  15. Lamas, O., Martínez, J.A., Marti, A. 2004Energy restriction restores the impaired immune response in overweight (cafeteria) ratsJ. Nutr. Biochem.15418425CrossRefPubMedGoogle Scholar
  16. Ledford, E., Billesbach, C. 2000Jet-cooled thermal modulator for comprehensive multidimensional gas chromatographyJ. High Resol. Chromatogr.23202204CrossRefGoogle Scholar
  17. Lee, A.L., Bartle, K.D., Lewis, A.C. 2001A model of peak amplitude enhancement in orthogonal two-dimensional gas chromatographyAnal. Chem.7313301335CrossRefGoogle Scholar
  18. Liu, Z., Phillips, J.B. 1991Comprehensive two-dimensional gas chromatography using an on-column thermal modulator interfaceJ. Chromatogr. Sci.29227231Google Scholar
  19. Marriott, P., Kinghorn, R.M. 2000New operational modes for multidimensional and comprehensive gas chromatography by using cryogenic modulationJ. Chromatogr. A866203212CrossRefPubMedGoogle Scholar
  20. Marriott, P., Shellie, R. 2002Principles and applications of comprehensive two-dimensional gas chromatographyTrends Anal. Chem.21573583CrossRefGoogle Scholar
  21. Marriott, P.J. 2002Orthogonal GC–GCMondello, L.Lewis, A.C.Bartle, K.D. eds. Multidimensional ChromatographyJohn Wiley & SonsChichester, England77108Google Scholar
  22. Nicholson, J.K., Foxall, P.J.D., Spraul, M., Farrant, R.D., Lindon, J.C. 1996750 MHz 1H and 1H−13C NMR spectroscopy of human blood plasmaAnal. Chem.67793811CrossRefGoogle Scholar
  23. Pendaries, C., Tronchère, H., Plantavid, M., Payrastre, B. 2003Phosphoinositide signaling disorders in human diseasesFEBS Lett5462531PubMedGoogle Scholar
  24. Phillips, J.B., Beens, J. 1999Comprehensive two-dimensional gas chromatography: a hyphenated method with strong coupling between two dimensionsJ. Chromatogr. A856331347CrossRefPubMedGoogle Scholar
  25. Phillips, J.B., Xu, J. 1995Comprehensive multi-dimensional gas chromatographyJ. Chromatogr. A703327334CrossRefGoogle Scholar
  26. Schmidt, A., Karas, M., Dülcks, T. 2003Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: when does ESI turn into nano-ESIJ. Am. Soc. Mass Spectrom14492500CrossRefPubMedGoogle Scholar
  27. Scholz, M., Gatzek, S., Sterling, A., Fiehn, O. and Selbig, J. (in press). Metabolite fingerprinting: detecting biological features by independent component analysis. Bioinformatics.Google Scholar
  28. Shellie, R., Mondello, L., Marriott, P., Dugo, G. 2002Characterisation of lavender essential oils by using gas chromatography–mass spectrometry with correlation of linear retention indices and comparison with comprehensive two-dimensional gas chromatographyJ. Chromatogr. A970225234CrossRefPubMedGoogle Scholar
  29. Shellie, R.A., Marriott, P.J., Huie, C.W. 2003Comprehensive two dimensional gas chromatography (GC  × GC) and GC × GC-quadrupole MS analysis of Asian and American ginsengJ. Sep. Sci2611851192CrossRefGoogle Scholar
  30. Soga, T., Ohashi, Y., Ueno, Y., Naraoka, H., Tomita, M., Nishioka, T. 2003Quantitative metabolome analysis using capillary electrophoresis mass spectrometryJ. Proteome Res248894CrossRefPubMedGoogle Scholar
  31. Steuer, R., Kurth, J., Fiehn, O., Weckwerth, W. 2003Observing and interpreting correlations in metabolic networksBio informatics1910191026Google Scholar
  32. Tolstikov, V.V., Lommen, A., Nakanishi, K., Tanaka, N., Fiehn, O. 2003Monolithic silica-based capillary reversed-phase liquid chromatography/electrospray mass spectrometry for plant metabolomicsAnal. Chem7567376740PubMedGoogle Scholar
  33. Vaidyanathan, S., Rowland, J.J., Kell, D.B., Goodacre, R. 2001Discrimination of aerobic endospore-forming bacteria via electrospray-ionization mass spectrometry of whole cell suspensionsAnal. Chem.7341344144CrossRefPubMedGoogle Scholar
  34. Wang, Y., Bollard, M.E., Keun, H. 2003Spectral editing and pattern recognition methods applied to high-resolution magic-angle spinning 1H nuclear magnetic resonance spectroscopy of liver tissuesAnal. Biochem.3232326CrossRefGoogle Scholar
  35. Weckwerth, W. 2004Metabolomics in systems biologyAnnu. Rev. Plant Biol.54669689CrossRefGoogle Scholar
  36. Weckwerth, W., Ehlers, M.L., Wenzel, K., Fiehn, O. 2004Metabolic networks unravel the effects of silent plant phenotypesProc. Natl. Acad. Sci. USA10178097814CrossRefPubMedGoogle Scholar
  37. Weckwerth, W., Wenzel, K., Fiehn, O. 2004Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networksProteomics47883CrossRefPubMedGoogle Scholar
  38. Welthagen, W., Schnelle-Kreis, J., Zimmermann, R. 2003Search criteria and rules for comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry analysis of airborne particulate matterJ. Chromatogr. A1019233249CrossRefPubMedGoogle Scholar
  39. Wittmann, C., Kromer, J.O., Kiefer, P., Binz, T., Heinzle, E. 2004Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteriaAnal. Biochem.327135139CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Werner Welthagen
    • 1
    • 2
  • Robert A. Shellie
    • 3
  • Joachim Spranger
    • 4
    • 5
  • Michael Ristow
    • 4
    • 5
  • Ralf Zimmermann
    • 1
    • 2
    • 6
  • Oliver Fiehn
    • 7
  1. 1.Institute of Ecological ChemistryGSF-Research CentreOberschleißheimGermany
  2. 2.Analytical ChemistryUniversity of AugsburgAugsburgGermany
  3. 3.Max-Planck-Institute of Molecular Plant PhysiologyPotsdamGermany
  4. 4.German Institute of Human NutritionPotsdam-RehbrückeGermany
  5. 5.Charité University MedicineBerlinGermany
  6. 6.BIfA – Bavarian Institute of Applied Environmental Research and TechnologyAugsburgGermany
  7. 7.Genome CenterUniversity of CaliforniaDavisUSA

Personalised recommendations