Metabolomics

, Volume 1, Issue 1, pp 29–37 | Cite as

Metabolome analysis and metabolic simulation

  • Nobuyoshi Ishii
  • Tomoyoshi Soga
  • Takaaki Nishioka
  • Masaru Tomita
Article

For many decades microorganisms have been used for industrial purposes; traditional fermentations such as brewing and production of food additives, aroma molecules, organic acids and pharmaceutical-like antibiotics or recombinant proteins are instances of the industrial microorganism utilization. Therefore, microorganism modeling and simulation have been required for engineering purposes, because of demands for design, optimization and quality control of large-scale fermentation plants. Modeling has recently become more highly developed, aided by the deciphering of microorganism genomes, the completion of metabolic databases, the development of analytical methodologies and improvements in the performance of computers. This paper reviews past and recent metabolic simulation of microorganisms, and also discusses the metabolome analytical techniques and the construction of large-scale microorganism models which are now being developed in our group.

Key words

metabolome simulation microorganism capillary electrophoresis mass spectrometry 

References

  1. Aiba, S., Matsuoka, M. 1979Identification of metabolic model: citrate production from glucose by Candida lipolyticaBiotechnol. Bioeng2113731386CrossRefGoogle Scholar
  2. Aharoni, A., Ric de Vos, C.H., Verhoeven, H.A.,  et al. 2002Nontargeted metabolome analysis by use of Fourier transform ion cyclotron mass spectrometryOmics6217234CrossRefPubMedGoogle Scholar
  3. Avery, M.J. 2003Quantitative characterization of differential ion suppression on liquid chromatography/atmospheric pressure ionization mass spectrometric bioanalytical methodsRapid Commun. Mass Spectrom17197201CrossRefPubMedGoogle Scholar
  4. Britton, R., Eichenberger, P., Gonzalez-Pastor, J.,  et al. 2002Genome-wide analysis of the stationary-phase sigma factor (sigma-H) regulon of Bacillus subtilisJ. Bacteriol18448814890CrossRefPubMedGoogle Scholar
  5. Cao, P., Moini, M. 1998Analysis of peptides, proteins, protein digests, and whole human blood by capillary electrophoresis/electrospray ionization-mass spectrometry using an in-capillary electrode sheathless interfaceJ. Am. Soc. Mass Spectrom910811088CrossRefPubMedGoogle Scholar
  6. Castrillo, J.I., Hayes, A., Mohammed, S., Gaskell, S.J., Oliver, S.G. 2003An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometryPhytochemistry62929937CrossRefPubMedGoogle Scholar
  7. Chassagnole, C., Rais, B., Quentin, E., Fell, D.A., Mazat, J.P. 2001An integrated study of threonine-pathway enzyme kinetics in Escherichia coliBiochem. J356415423CrossRefPubMedGoogle Scholar
  8. Chassagnole, C., Noisommit-Rizzi, N., Schmid, J.W., Mauch, K., Reuss, M. 2002Dynamic modeling of the central carbon metabolism of Escherichia coliBiotechnol. Bioeng795373CrossRefGoogle Scholar
  9. Covert, M.W., Knight, E.M., Reed, J.L., Herrgard, M.J., Palsson, B.O. 2004Integrating high-throughput and computational data elucidates bacterial networksNature4299296CrossRefPubMedGoogle Scholar
  10. Deutscher, J., Galinier, A., Martin-Verstraete, I. 2002

    Carbohydrate uptake and metabolism

    Sonenshein, A.Hoch, J.Losick, R. eds. Bacillus subtilis and its closest relatives from genes to cellsASM PressWashington, DC129162
    Google Scholar
  11. Domach, M.M., Leung, S.K., Cahn, R.E., Cocks, G.G., Shuler, M.L. 1984Computer model for glucose-limited growth of a single cell of Escherichia coli B/r-ABiotechnol. Bioeng26203216CrossRefGoogle Scholar
  12. Edwards, J.S., Palsson, B.O. 1999Systems properties of the Haemophilus influenzae Rd metabolic genotypeJ. Biol. Chem2741741017416CrossRefPubMedGoogle Scholar
  13. Edwards, J.S., Palsson, B.O. 2000The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilitiesProc. Natl. Acad. Sci. USA9755285533CrossRefPubMedGoogle Scholar
  14. Fawcett, P., Eichenberger, P., Losick, R., Youngman, P. 2000The transcriptional profile of early to middle sporulation in Bacillus subtilisProc. Natl. Acad. Sci. USA9780638068CrossRefPubMedGoogle Scholar
  15. Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R.N., Willmitzer, L. 2000Metabolite profiling for plant functional genomicsNat. Biotechnol1811571161CrossRefPubMedGoogle Scholar
  16. Fiehn, O., Kopka, J., Trethewey, R.N., Willmitzer, L. 2000Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometryAnal. Chem7235733580CrossRefPubMedGoogle Scholar
  17. Forster, J., Famili, I., Fu, P., Palsson, B.O., Nielsen, J. 2003Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic networkGenome Res13244253CrossRefPubMedGoogle Scholar
  18. Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R.D., Bairoch, A. 2003ExPASy: the proteomics server for in-depth protein knowledge and analysisNucl. Acids Res3137843788CrossRefPubMedGoogle Scholar
  19. Gillespie, D.T. 1977Exact stochastic simulation of coupled chemical reactionsJ. Phys. Chem8123402361CrossRefGoogle Scholar
  20. Gujer, W., Henze, M., Mino, T., Loosdrecht, M.C.M. 1999Activated Sludge Model No. 3Wat. Sci. Technol39183193CrossRefGoogle Scholar
  21. Hoefnagel, M.H., Starrenburg, M.J., Martens, D.E.,  et al. 2002Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysisMicrobiology14810031013PubMedGoogle Scholar
  22. Hynne, F., Dano, S., Sorensen, P.G. 2001Full-scale model of glycolysis in Saccharomyces cerevisiaeBiophys. Chem94121163CrossRefPubMedGoogle Scholar
  23. International Human Genome Sequencing Consortium2001Initial sequencing and analysis of the human genomeNature409860921Google Scholar
  24. Jeong, J.W., Snay, J., Attai, M.M. 1990A mathematical model for examining growth and sporulation process of Bacillus subtilisBiotechnol. Bioeng35160184CrossRefGoogle Scholar
  25. Johnson, S.K., Houk, L.L., Johnson, D.C., Houk, R.S. 1999Determination of small carboxylic acids by capillary electrophoresis with electrospray-mass spectrometryAnal. Chim. Acta38918CrossRefGoogle Scholar
  26. Kanehisa, M., Goto, S., Kawashima, S., Nakaya, A. 2002The KEGG databases at GenomeNetNucl. Acids Res304246CrossRefPubMedGoogle Scholar
  27. Karp, P.D., Riley, M., Saier, M., Paulsen, I.T., Paley, S.M., Pellegrini-Toole, A. 2000The EcoCyc and MetaCyc databasesNucl. Acids Res285659CrossRefPubMedGoogle Scholar
  28. Kikuchi, S., Fujimoto, K., Kitagawa, N.,  et al. 2003Kinetic simulation of signal transduction system in hippocampal long-term potentiation with dynamic modeling of protein phosphatase 2ANeural Networks1613891398CrossRefPubMedGoogle Scholar
  29. Kitano, H. 2000Perspectives on Systems BiologyNew Gen. Comput18199216Google Scholar
  30. Monod, J. 1949The growth of bacterial culturesAnn. Rev. Microbiol3371394CrossRefGoogle Scholar
  31. Pramanik, J., Keasling, J.D. 1997Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirementsBiotechnol. Bioeng56398421CrossRefGoogle Scholar
  32. Reed, J.L., Palsson, B.O. 2003Thirteen years of building constraint-based in silico models of Escherichia coliJ. Bacteriol18526922699CrossRefPubMedGoogle Scholar
  33. Reo, N.V. 2002NMR-based metabolomicsDrug Chem. Toxicol25375382CrossRefPubMedGoogle Scholar
  34. Rizzi, M., Baltes, M., Theobald, U., Reuss, M. 1997In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical modelBiotechnol. Bioeng55592608CrossRefGoogle Scholar
  35. Roepenack-Lahaye, E., von Degenkolb, T., Zerjeski, M.,  et al. 2004Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometryPlant Physiol134548559CrossRefPubMedGoogle Scholar
  36. Sato, S., Soga, T., Tomita, M. and Nishioka, T. (2004). Simultaneous determination of main metabolites in rice leaves using capillary electrophoresis mass spectrometry and capillary electrophoresis diode array detection. Plant J. 40, 151–163Google Scholar
  37. Schilling, C.H., Edwards, J.S., Palsson, B.O. 1999Toward metabolic phenomics: analysis of genomic data using flux balancesBiotechnol. Prog15288295CrossRefPubMedGoogle Scholar
  38. Schilling, C.H., Covert, M.W., Famili, I., Church, G.M., Edwards, J.S., Palsson, B.O. 2002Genome-scale metabolic model of Helicobacter pylori 26695J. Bacteriol18445824593CrossRefPubMedGoogle Scholar
  39. Schramel, O., Michalke, B., Kettrup, A. 1998Analysis of metal species by using electrospray ionization mass spectrometry and capillary electrophoresis electrospray ionization mass spectrometryJ. Chromatogr. A819231242CrossRefGoogle Scholar
  40. Smith, S.R.L. (1981). in Lidstrom, M.E. and Tabita, F.R. (Eds), Microbial growth on C1 compounds, Kluwer Academic Publishers, Hardbound, pp. 342–348Google Scholar
  41. Soga, T., Heiger, D.N. 2000Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometryAnal. Chem7212361241CrossRefPubMedGoogle Scholar
  42. Soga, T., Ueno, Y., Naraoka, H., Ohashi, Y., Tomita, M., Nishioka, T. 2002Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometryAnal. Chem7422332239CrossRefPubMedGoogle Scholar
  43. Soga, T., Ueno, Y., Naraoka, H., Matsuda, K., Tomita, M., Nishioka, T. 2002Pressure-assisted capillary electrophoresis electrospray ionization mass spectrometry for analysis of multivalent anionsAnal. Chem7462246229CrossRefPubMedGoogle Scholar
  44. Soga, T., Ohashi, Y., Ueno, Y., Naraoka, H., Tomita, M., Nishioka, T. 2003Quantitative metabolome analysis using capillary electrophoresis mass spectrometryJ. Proteome Res2488494CrossRefPubMedGoogle Scholar
  45. Soga, T., Kakazu, Y., Robert, M., Tomita, M., Nishioka, T. 2004Qualitative and quantitative analysis of amino acids by capillary electrophoresis–electrospray ionization–tandem mass spectrometryElectrophoresis2519641972CrossRefPubMedGoogle Scholar
  46. Sonenshein, A.L. 2002

    The Krebs citric acid cycle

    Sonenshein, A.L.Hoch, J.A.Losick, R. eds. Bacillus subtilis and its closest relatives from genes to cellsASM PressWashington, DC151162
    Google Scholar
  47. Stenson, A.C., Landing, W.M., Marshall, A.G., Cooper, W.T. 2002Ionization and fragmentation of humic substances in electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometryAnal. Chem7443974409CrossRefPubMedGoogle Scholar
  48. Stephanopoulos, G., Vallino, J.J. 1991Network rigidity and metabolic engineering in metabolite overproductionScience25216751681PubMedGoogle Scholar
  49. Takahashi, K., Kaizu, K., Hu, B., Tomita, M. 2004A multi-algorithm, multi-timescale method for cell simulationBioinformatics20538546CrossRefPubMedGoogle Scholar
  50. Tomita, M., Hashimoto, K., Takahashi, K.,  et al. 1999E-CELL: software environment for whole-cell simulationBioinformatics157284CrossRefPubMedGoogle Scholar
  51. Tomita, M. 2001Towards computer aided design (CAD) of useful microorganismsBioinformatics1710911092CrossRefPubMedGoogle Scholar
  52. Uratani-Wong, B., Lopez, J., Freese, E. 1981Induction of citric acid cycle enzymes during initiation of sporulation by guanine nucleotide deprivationJ. Bacteriol146337344PubMedGoogle Scholar
  53. Varner, J.D. 2000Large-scale prediction of phenotype: conceptBiotechnol. Bioeng69664678CrossRefPubMedGoogle Scholar
  54. Vaseghi, S., Baumeister, A., Rizzi, M., Reuss, M. 1999In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiaeMetab. Eng1128140CrossRefPubMedGoogle Scholar
  55. Venter, J.C., Adams, M.D., Myers, E.W.,  et al. 2001The sequence of the human genomeScience29113041351CrossRefPubMedGoogle Scholar
  56. Wagner, C., Sefkow, M., Kopka, J. 2003Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profilesPhytochemistry62887900CrossRefPubMedGoogle Scholar
  57. Yao, T. 2002Bioinformatics for the genomic sciences and towards systems biology. Japanese activities in the post-genome eraProg. Biophys. Mol. Biol802342CrossRefPubMedGoogle Scholar
  58. Yugi, K., Tomita, M. 2004A general computational model of mitochondrial metabolism in a whole organelle scaleBioinformatics2017951796CrossRefPubMedGoogle Scholar
  59. Zhao, J.-Y., Thibault, P., Tazawa, T., Quilliam, M.A. 1997Analysis of tetramine in sea snails by capillary electrophoresis-tandem mass spectrometryJ. Chromatogr. A781555564CrossRefGoogle Scholar
  60. Zeigler, B.P., Weinberg, R. 1970System theoretic analysis of models: computer simulation of a living cellJ. Theor. Biol293556CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Nobuyoshi Ishii
    • 1
  • Tomoyoshi Soga
    • 1
    • 2
  • Takaaki Nishioka
    • 1
    • 3
  • Masaru Tomita
    • 1
    • 2
  1. 1.Institute for Advanced BiosciencesKeio UniversityTsuruokaJapan
  2. 2.Human Metabolome Technologies IncTsuruokaJapan
  3. 3.Graduate School of Agricultural SciencesKyoto UniversityKyotoJapan

Personalised recommendations