Metabolomics

, Volume 1, Issue 3, pp 279–285 | Cite as

Metabolic fingerprinting for bio-indication of nitrogen responses in Calluna vulgaris heath communities

  • Eleanor A. Gidman
  • Royston Goodacre
  • Bridget Emmett
  • Deirdre B. Wilson
  • Jacky A. Carroll
  • Simon J. M. Caporn
  • Neil Cresswell
  • Dylan Gwynn-Jones
Article

Increased atmospheric deposition of nitrogen (N) over the last 50 years is known to have led to deleterious effects on the health of Calluna vulgaris heathland, with increased proliferation of grasses and loss of species diversity. However, currently it is difficult to attribute damage specifically to N deposition rather than other drivers of change such as inappropriate management. Metabolic fingerprinting using FT-IR offers a rapid, cost-effective and “holistic” means for quantifying foliar biochemistry responses specifically to N deposition. To test the potential of this approach we used a long term lowland heath N addition study in Chesire, England. FT-IR spectra of treated C. vulgaris shoot material showed that responses were detectable above 20 kg N ha−1 year−1. Differentiation was also evident in C. vulgaris metabolic fingerprints due to additional watering. We have shown that FT-IR is able to identify biochemical variations in C. vulgaris related to increases in received N and water. This technique therefore provides a sensitive measure of biochemical change in response to N addition, and allows development towards predictive modelling of N deposition at the landscape level.

Keywords:

nitrogen Calluna vulgaris bio-indication metabolic fingerprinting FT-IR 

Notes

Acknowledgments

Roy Goodacre thanks BBSRC for financial support. Eleanor A. Gidman thanks NERC for funding a Ph.D. studentship and David Causton for invaluable advice on statistical matters. Deirdre B. Wilson thanks Chesire County Council for use of the field site at Little Budworth.

References

  1. Barker C.G., Power S.A., Bell J.N.B., Orme C.D.L. (2004) Effects of habitat management on heathland response to atmospheric nitrogen deposition. Biol.Conserv. 120:41–52CrossRefGoogle Scholar
  2. Bobbink R. (1998) Impacts of tropospheric ozone and airborne nitrogenous pollutants on natural and semi-natural ecosystems: a commentary. New Phytol. 139:161–168CrossRefGoogle Scholar
  3. Bobbink, R., Hornung, M. and Roelofs, J.G.M. (1996). Empirical nitrogen critical loads for natural and semi-natural ecosystems in Manual on methodologies and criteria for mapping critical levels/loads and geographical areas where they are exceeded, UN ECE Convention on long-range transboundary air pollution. Federal Environmental Agency, BerlinGoogle Scholar
  4. Bouffard S.P., Katon J.E., Sommer A.J., Danielson N.D. (1994) Development of microchannel thin-layer chromatography with infrared microspectroscopic detection. Anal. Chem. 66:1937–1940CrossRefGoogle Scholar
  5. Caporn S.J.M., Risager M., Lee J.A. (1994) Effect of nitrogen supply on frost hardiness in Calluna vulgaris (L.) Hull. New Phytol. 128:461–468CrossRefGoogle Scholar
  6. Carroll J.A., Caporn S.J.M., Cawley L. Read D.J., Lee J.A. (1999) The effect of increased deposition of atmospheric nitrogen on Calluna vulgaris in upland Britain. New Phytol. 141:423–431CrossRefGoogle Scholar
  7. Cawley, L.R. (2000) Pollutant N and drought tolerance in heathland plants. Ph.D. thesis, Manchester Metropolitan UniversityGoogle Scholar
  8. Ellis D.I., Harrigan G.G., Goodacre R. (2003) Metabolic fingerprinting with Fourier transform infrared spectroscopy. In: Harrigan G.G., Goodacre R. (eds), Metabolic profiling: its role in biomarker discovery and gene function analysis. Kluwer Academic Publishers, Dordrecht The Netherlands, pp 111–124Google Scholar
  9. Fiehn O. (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp. Funct. Genom. 2:155–168CrossRefGoogle Scholar
  10. Fowler D., Cape J.N., Deans J.D., Leith I.D., Murray M.B., Smith R.I., Sheppard L.J., Unsworth M.H. (1989) Effects of acid mist on the frost hardiness of red spruce seedlings. New Phytol. 113:321–335CrossRefGoogle Scholar
  11. Gidman E., Goodacre R., Emmett B., Smith A.R., Gwynn-Jones D. (2003) Investigating plant-plant interference by metabolic fingerprinting. Phytochemistry 63:705–710PubMedCrossRefGoogle Scholar
  12. Gidman E., Goodacre R., Emmett B., Sheppard L.J., Leith I.D., Gwynn-Jones D. (2004) Applying metabolic fingerprinting to ecology: the use of Fourier-transform infrared spectroscopy for the rapid screening of plant responses to N deposition. Water Air Soil Poll. : Focus 4:251–258CrossRefGoogle Scholar
  13. Goodacre R., Timmins É.M., Burton R., Kaderbhai N., Woodward A.M., Kell D.B., Rooney P.J. (1998). Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology 144:1157–1170PubMedCrossRefGoogle Scholar
  14. Goodacre R. Vaidyanathan S., Dunn W.B., Harrigan G.G., Kell D.B. (2004) Metabolomics by numbers - acquiring and understanding global metabolite data. Trends in Biotechnol. 22:245–252PubMedCrossRefGoogle Scholar
  15. Heil, G.W. and Diemont, W.H. (1983) Raised nutrient levels change heathland into grassland. Vegetatio 53, 113–120CrossRefGoogle Scholar
  16. Hicks W.K., Leith I.D., Woodin S.J., Fowler D. (2000) Can the foliar nitrogen concentration of upland vegetation be used for predicting atmospheric nitrogen deposition? Evidence from field surveys. Environ. Pollut. 107:367–376PubMedCrossRefGoogle Scholar
  17. Huhn G., Schulz H. (1996) Contents of free amino acids in Scots pine needles from field sites with different levels of nitrogen deposition. New Phytol. 134:95–101CrossRefGoogle Scholar
  18. Johnson H.E., Broadhurst D., Goodacre R., Smith A.R. (2003) Metabolic fingerprinting of salt-stressed tomatoes. Phytochemisytry 62:919–928PubMedCrossRefGoogle Scholar
  19. Kell D.B., Oliver S.G. (2004) Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post genomic era. Bioessays 26:99–105PubMedCrossRefGoogle Scholar
  20. Løkke, H., Bak, J., Bobbink, R., et al. (2000) Critical Loads Copenhagen 1999. 21st–25th November 1999. Conference report prepared by members of the conference’s secretariat, the scientific committee and chairmen and rapporteurs of its workshops in consulatation with the UN/ECE secretariat. Critical Loads. National Environment Research Institute, Denmark 2000)Google Scholar
  21. Nilsson J. and Grennfelt, P. (Eds). (1998) Critical loads for Sulphur and Nitrogen. Report of the Skokloster workshop. Miljörapport 15. Nordic Council of Ministers, CopenhagenGoogle Scholar
  22. Pietila M., Lahdesmaki P., Pietilainen P., Ferm A., Hytonen J., Patila A. (1991) High nitrogen deposition causes changes in amino-acid-concentrations and protein spectra in needles of the Scots pine (Pinus-sylvestris). Environ. Pollut. 72:103–115PubMedCrossRefGoogle Scholar
  23. Pitcairn C.E.R., Fowler D. (1995) Deposition of fixed atmospheric nitrogen and foliar nitrogen content of bryophytes and Calluna vulgaris (L.) Hull. Environ. Pollut. 88:193–205PubMedCrossRefGoogle Scholar
  24. Pitcairn C.E.R., Fowler D., Leith I.D., Sheppard L.J., Sutton M.A., Kennedy V., Okello E. (2003) Bioindicators of enhanced nitrogen deposition. Environ. Pollut. 126:353–361PubMedCrossRefGoogle Scholar
  25. Pitcairn C.E.R., Leith I.D., Sheppard L.J., Sutton M.A., Fowler D., Munro R.C., Tang S., Wilson D. (1998) The relationship between nitrogen deposition, species composition and foliar nitrogen concentrations in woodland flora in the vicinity of livestock farms. Environ. Pollut. 102(S1):41–48CrossRefGoogle Scholar
  26. Power S.A., Ashmore M.R., Cousins D.A. (1998) Impacts and fate of experimentally enhanced nitrogen deposition on a British lowland heath. Environ. Pollut. 102:27–34CrossRefGoogle Scholar
  27. Radovic B.S., Goodacre R., Anklam E. (2001) Contribution of pyrolysis mass spectrometry (Py-MS) to authenticity testing of honey. J. Appl. Pyrol. 60:79–87CrossRefGoogle Scholar
  28. Schmitt J., Flemming H.C. (1998) FT-IR-spectroscopy in microbial and material analysis. Int. Biodeter. Biodegr. 41(1):1–11CrossRefGoogle Scholar
  29. Skeffington R.A. (1999) The use of critical loads in environmental policy making: A critical appraisal. Environ. Sci. Technol. 33:245–252Google Scholar
  30. Soares A., Pearson J. (1997) Short-term physiological responses of mosses to atmospheric ammonia and nitrate. Water Air Soil Poll. 93:225–242Google Scholar
  31. Sokal R.R., Rohlf F.J. (1969) Biometry. W. H. Freeman and Company, San FranciscoGoogle Scholar
  32. Stevens C.J., Dise N.B., Mountford J.O., Gowing D.J. (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879PubMedCrossRefGoogle Scholar
  33. Tilman D., Fargione J., Wolff B., D’Antonio C., Dobson A., Howarth R., Schindler D., Schlesinger W.H., Simberloff D., Swackhamer D. (2001) Forcasting agriculturally driven global environmental change. Science 292:281–284PubMedCrossRefGoogle Scholar
  34. Timmins É.M., Howell S.A., Alsberg B.K., Noble W.C., Goodacre R. (1998) Rapid differentiation of closely related Candida species and strains by Pyrolysis-mass spectroscopy and Fourier transform-Infrared spectroscopy. J. Clin. Microbiol. 36 367–374PubMedGoogle Scholar
  35. Vitousek P.M. (1994) Beyond global warming: Ecology and global change. Ecology 75:1861–1876CrossRefGoogle Scholar
  36. Vitousek P.M., Aber J.D., Howarth R.W., Likens G.E., Matson P.A., Schindler D.W., Schlesinger W.H., Tilman D.G. (1997) Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Appl. 7:737–750Google Scholar
  37. Wilson, D.B. (2003) Effect of nitrogen enrichment on the ecology and nutrient cycling of a lowland heathland. Ph.D. thesis, Manchester Metropolitan UniversityGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Eleanor A. Gidman
    • 1
  • Royston Goodacre
    • 2
  • Bridget Emmett
    • 3
  • Deirdre B. Wilson
    • 4
  • Jacky A. Carroll
    • 4
  • Simon J. M. Caporn
    • 4
  • Neil Cresswell
    • 5
  • Dylan Gwynn-Jones
    • 1
  1. 1.Institute of Biological Sciences, Trophic Interaction FacilityThe University of Wales AberystwythCeredigionUK
  2. 2.School of ChemistryThe University of ManchesterManchesterUK
  3. 3.Centre for Ecology and HydrologyBangorUK
  4. 4.Atmospheric Research and Information Centre, Department of Environmental and Geographical SciencesManchester Metropolitan UniversityManchesterUK
  5. 5.Department of Biological SciencesManchester Metropolitan UniversityManchesterUK

Personalised recommendations