Impact of genetic variations in ADORA2A gene on depression and symptoms: a cross-sectional population-based study

  • Sílvia Oliveira
  • Ana Paula ArdaisEmail author
  • Clarissa Ribeiro Bastos
  • Marta Gazal
  • Karen Jansen
  • Luciano de Mattos Souza
  • Ricardo Azevedo da Silva
  • Manuella Pinto Kaster
  • Diogo Rizzato Lara
  • Gabriele Ghisleni
Original Article


Genetic variants involved in adenosine metabolism and its receptors were associated with increased risk for psychiatric disorders, including anxiety, depression, and schizophrenia. Here, we examined an association between a single nucleotide polymorphism in A2A receptor gene (ADORA2A, rs2298383 SNP) with current depressive episode and symptom profile. A total of 1253 individuals from a cross-sectional population-based study were analyzed by the Mini International Neuropsychiatric Interview 5.0. Our data showed that the TT genotype of ADORA2A rs2298383 SNP was associated with reduced risk for depression when compared to the CC/CT genotypes (p = 0.020). This association remained significant after adjusting for confounding variables such as smoking, gender, socioeconomic class, and ethnicity (OR = 0.631 (95% CI 0.425–0.937); p = 0.022). Regarding the symptoms associated with depression, we evaluated the impact of the ADORA2A SNP in the occurrence of sad/discouraged mood, anhedonia, appetite changes, sleep disturbances, motion changes, energy loss, feelings of worthless or guilty, difficulty in concentrating, and presence of bad thoughts. Notably, the TT genotype was independently associated with reduced sleep disturbances (OR = 0.438 (95% CI 0.258–0.743); p = 0.002) and less difficulty in concentrating (OR = 0.534 (95% CI 0.316–0.901; p = 0.019). The cross-sectional design cannot evaluate the cause-effect relationship and did not evaluate the functional consequences of this polymorphism. Our data support an important role for ADORA2A rs2298383 SNP in clinical heterogeneity associated with depression. The presence of the TT genotype was associated with decrease risk for current depression and disturbances in sleep and attention, two of the most common symptoms associated with this disorder.


Depression Adenosine receptor Polymorphism Depressive symptoms 


Authors’ contributions

All authors mentioned in the paper have significantly contributed to the research. RAS, KJ, LDMS, and DRL conceived and supervised the clinical evaluation. MPK and GG and supervised the collection and processing of biological samples. CRB and SO performed the DNA extraction and genotyping. SO, APA, GG, and MPK performed the statistical analysis and wrote the article. All authors approved the final manuscript.

Funding information

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES), and Programa de Apoio a Núcleos de Excelência-Fundação de Amparo a Pesquisa do Estado do Rio Grande do Sul (PRONEX-FAPERGS 08/2009 - Pronex 10/0055-0). RAS, KJ, LDMS, and MPK are CNPq Research Fellows. APA and CRB receive a fellowship from CAPES.

Compliance with ethical standards

Conflicts of interest

Sílvia Oliveira declares no conflict of interest.

Ana Paula Ardais declares no conflict of interest.

Clarissa Ribeiro Bastos declares no conflict of interest.

Marta Gazal declares no conflict of interest.

Karen Jansen declares no conflict of interest.

Luciano de Mattos Souza declares no conflict of interest.

Ricardo Azevedo da Silva declares no conflict of interest.

Manuella Pinto Kaster declares no conflict of interest.

Diogo Rizzato Lara declares no conflict of interest.

Gabriele Ghisleni declares no conflict of interest.

Ethical approval

The study was approved by the Ethical Committee of the Catholic University of Pelotas, Brazil (protocol number 2010/15), and all participants signed the informed consent.


  1. 1.
    Sobocki P, Jönsson B, Angst J, Rehnberg C (2006) Cost of depression in Europe. J Ment Health Policy Econ 9:87–98PubMedGoogle Scholar
  2. 2.
    Viinamaki H, Heiskanen T, Lehto SM, Niskanen L, Koivumaa-Honkanen H, Tolmunen T, Honkalampi K, Saharinen T, Haatainen K, Hintikka J (2009) Association of depressive symptoms and metabolic syndrome in men. Acta Psychiatr Scand 120:23–29. CrossRefPubMedGoogle Scholar
  3. 3.
    Schroeter ML, Abdul-Khaliq H, Acher J, Steiner J, Blasig IE, Mueller K (2010) Mood disorders are glial disorders: evidence from in vivo studies. Cardiovasc Psychiatry Neurol 780645.
  4. 4.
    Kendler KS, Myers JO, Gardner C (2006) Caffeine intake, toxicity and dependence and lifetime risk for psychiatric and substance use disorders: an epidemiologic and co-twin control analysis. Psychol Med 36:1717–1725. CrossRefPubMedGoogle Scholar
  5. 5.
    Orstavik RE, Kendler KS, Czajkowski N, Tambs K, Reichborn-Kjennerud T (2007) Genetic and environmental contributions to depressive personality disorder in a population-based sample of Norwegian twins. J Affect Disord 99:181–189. CrossRefPubMedGoogle Scholar
  6. 6.
    American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders. American Psychiatric Association, Washington DCGoogle Scholar
  7. 7.
    Insel TR (2014) The NIMH Research Domain Criteria (RDoC) Project: precision medicine for psychiatry. Am J Psychiatry 171:395–397. CrossRefPubMedGoogle Scholar
  8. 8.
    Scaccianoce S, Navarra D, Sciullo AD, Angelucci L, Endröczi E (1989) Adenosine and pituitary–adrenocortical axis activity in the rat. Neuroendocrinology 50:464–468. CrossRefPubMedGoogle Scholar
  9. 9.
    Okada M, Nutt DJ, Murakami T, Zhu G, Kamata A, Kawata Y, Kaneko S (2001) Adenosine receptor subtypes modulate two major functional pathways for hippocampal serotonin release. J Neurosci 21:628–640CrossRefPubMedGoogle Scholar
  10. 10.
    Pechlivanova DM, Tchekalarova JD, Alova LH, Petkov VV, Nikolov RP, Yakimova KS (2012) Effect of long-term caffeine administration on depressive-like behavior in rats exposed to chronic unpredictable stress. Behav Pharmacol 23:339–347. CrossRefPubMedGoogle Scholar
  11. 11.
    Lucas M, Mirzaei F, Pan A, Okereke OI, Willett WC, O’Reilly ÉJ, Koenen K, Ascherio (2011) Coffee, caffeine, and risk of depression among women. Arch Intern Med 171:1571–1578. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Omagari K, Sakaki M, Tsujimoto Y, Shiogama Y, Iwanaga A, Ishimoto M, Yamaguchi A, Masuzumi M, Kawase M, Ichimura M, Yoshitake T, Miyahara Y (2014) Coffee consumption is inversely associated with depressive status in Japanese patients with type 2 diabetes. J Clin Biochem Nutr 55:135–142. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pham NM, Nanri A, Kurotani K, Kuwahara K, Kume A, Sato M, Hayabuchi H, Mizoue T (2014) Green tea and coffee consumption is inversely associated with depressive symptoms in a Japanese working population. Public Health Nutr 17:625–633. CrossRefPubMedGoogle Scholar
  14. 14.
    Guo X, Park Y, Freedman ND, Sinha R, Hollenbeck AR, Blair A, Chen H (2014) Sweetened beverages, coffee, and tea and depression risk among older US adults. PLoS One 9:e94715. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wang L, Shen X, Wu Y, Zhang D (2016) Coffee and caffeine consumption and depression: a meta-analysis of observational studies. Aust N Z J Psychiatry 50:228–242. CrossRefPubMedGoogle Scholar
  16. 16.
    Liu QS, Deng R, Fan Y, Li K, Meng F, Li X, Liu R (2017) Low dose of caffeine enhances the efficacy of antidepressants in major depressive disorder and the underlying neural substrates. Mol Nutr Food Res 61:1600910. CrossRefGoogle Scholar
  17. 17.
    Kim J, Kim J (2018) Green tea, coffee, and caffeine consumption are inversely associated with self-report lifetime depression in the Korean population. Nutrients 10.
  18. 18.
    El Yacoubi M, Ledent C, Parmentier M, Bertorelli R, Ongini E, Costentin J, Vaugeois JM (2001) Adenosine A2A receptor antagonists are potential antidepressants: evidence based on pharmacology and A2A receptor knockout mice. Br J Pharmacol 134:68–77. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    El Yacoubi M, Costentin J, Vaugeois JM (2003) Adenosine A2A receptors and depression. Neurology 61:S82–S87CrossRefPubMedGoogle Scholar
  20. 20.
    Cunha RA, Ferré S, Vaugeois JM, Chen JF (2008) Potential therapeutic interest of adenosine A2A receptors in psychiatric disorders. Curr Pharm Des 14:1512–1524CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hodgson RA, Bertorelli R, Varty GB, Lachowicz JE, Forlani A, Fredduzzi S, Cohen-Williams ME, Higgins GA, Impagnatiello F, Nicolussi E, Parra LE, Foster C, Zhai Y, Neustadt BR, Stamford AW, Parker EM, Reggiani A, Hunter JC (2009) Characterization of the potent and highly selective A2A receptor antagonists preladenant and SCH 412348 [7-[2-[4-2,4 difluorophenyl]-1-piperazinyl]ethyl]-2-(2-furanyl)7Hpyrazolo[4,3e][1,2,4]triazolo[1,5c]pyrimidin-5-amine] in rodent models of movement disorders and depression. J Pharmacol Exp Ther 330:294–303. CrossRefPubMedGoogle Scholar
  22. 22.
    Batalha VL, Pego JM, Fontinha BM, Costenla AR, Valadas JS, Baqi Y, Radjainia H, Müller CE, Sebastião AM, Lopes LV (2013) Adenosine A(2A) receptor blockade reverts hippocampal stress-induced deficits and restores corticosterone circadian oscillation. Mol Psychiatry 18:320–331. CrossRefPubMedGoogle Scholar
  23. 23.
    Yamada K, Kobayashi M, Mori A, Jenner P, Kanda T (2013) Antidepressant-like activity of the adenosine A(2A) receptor antagonist, istradefylline (KW-6002), in the forced swim test and the tail suspension test in rodents. Pharmacol Biochem Behav 114-115:23–30. CrossRefPubMedGoogle Scholar
  24. 24.
    Kaster MP, Machado NJ, Silva HB, Nunes A, Ardais AP, Santana M, Baqi Y, Müller CE, Rodrigues AL, Porciúncula LO, Chen JF, Tomé ÂR, Agostinho P, Canas PM, Cunha RA (2015) Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress. Proc Natl Acad Sci U S A 112:7833–7838. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    López-Cruz L, Carbó-Gas M, Pardo M, Bayarri P, Valverde O, Ledent C, Salamone JD, Correa M (2017) Adenosine A2A receptor deletion affects social behaviors and anxiety in mice: involvement of anterior cingulate cortex and amygdala. Behav Brain Res 321:8–17. CrossRefPubMedGoogle Scholar
  26. 26.
    López-Cruz L, Salamone JD, Correa M (2018) Caffeine and selective adenosine receptor antagonists as new therapeutic tools for the motivational symptoms of depression. Front Pharmacol 9:526. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Padilla KM, Quintanar-Setephano A, López-Vallejo F, Berumen LC, Miledi R, García-Alcocer G (2018) Behavioral changes induced through adenosine A2A receptor ligands in a rat depression model induced by olfactory bulbectomy. Brain Behav 8:e00952. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Crespo M, León-Navarro DA, Martín M (2018) Early-life hyperthermic seizures upregulate adenosine A2A receptors in the cortex and promote depressive-like behavior in adult rats. Epilepsy Behav 86:173–178. CrossRefPubMedGoogle Scholar
  29. 29.
    Gass N, Ollila HM, Utge S, Partonen T, Kronholm E, Pirkola S, Suhonen J, Silander K, Porkka-Heiskanen T, Paunio T (2010) Contribution of adenosine related genes to the risk of depression with disturbed sleep. J Affect Disord 126:134–139. CrossRefPubMedGoogle Scholar
  30. 30.
    Deckert J, Nöthen MM, Rietschel M, Wildenauer D, Bondy B, Ertl MA, Knapp M, Schofield PR, Albus M, Maier W, Propping P (1996) Human adenosine A2A receptor (A2AR) gene: systematic mutation screening in patients with schizophrenia. J Neural Transm 103:1447–1455. CrossRefPubMedGoogle Scholar
  31. 31.
    Hong CJ, Liu HC, Liu TY, Liao DL, Tsai SJ (2005) Association studies of the adenosine A2a receptor (1976T>C) genetic polymorphism in Parkinson’s disease and schizophrenia. J Neural Transm 112:1503–1510. CrossRefPubMedGoogle Scholar
  32. 32.
    Childs E, Hohoff C, Deckert J, Xu K, Badner J, de Wit H (2008) Association between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology 33:2791–2800. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Freitag CM, Agelopoulos K, Huy E, Rothermundt M, Krakowitzky P, Meyer J, Deckert J, von Gontard A, Hohoff C (2010) Adenosine A(2A) receptor gene (ADORA2A) variants may increase autistic symptoms and anxiety in autism spectrum disorder. Eur Child Adolesc Psychiatry 19:67–74. CrossRefPubMedGoogle Scholar
  34. 34.
    Hohoff C, Domschke K, Schwarte K, Spellmeyer G, Vögele C, Hetzel G, Deckert J, Gerlach AL (2009) Sympathetic activity relates to adenosine A(2A) receptor gene variation in blood-injury phobia. J Neural Transm 116:659–662. CrossRefPubMedGoogle Scholar
  35. 35.
    Hohoff C, Mullings EL, Heatherley SV, Freitag CM, Neumann LC, Domschke K, Krakowitzky P, Rothermundt M, Keck ME, Erhardt A, Unschuld PG, Jacob C, Fritze J, Bandelow B, Maier W, Holsboer F, Rogers PJ, Deckert J (2010) Adenosine A2A receptor gene: evidence for association of risk variants with panic disorder and anxious personality. J Psychiatry Res 44:930–937. CrossRefGoogle Scholar
  36. 36.
    Rogers PJ, Hohoff C, Heatherley SV, Mullings EL, Maxfield PJ, Evershed RP, Deckert J, Nutt DJ (2010) Association of the anxiogenic and alerting effects of caffeine with ADORA2A and ADORA1 polymorphisms and habitual level of caffeine consumption. Neuropsychopharmacology 35:1973–1983. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kobayashi H, Ujike H, Iwata N, Inada T, Yamada M, Sekine Y, Uchimura N, Iyo M, Ozaki N, Itokawa M, Sora I (2010) The adenosine A2A receptor is associated with methamphetamine dependence/psychosis in the Japanese population. Behav Brain Funct 6:50. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hohoff C, Garibotto V, Elmenhorst D, Baffa A, Kroll T, Hoffmann A, Schwarte K, Zhang W, Arolt V, Deckert J, Bauer A (2014) Association of adenosine receptor gene polymorphisms and in vivo adenosine A1 receptor binding in the human brain. Neuropsychopharmacology 39:2989–2999. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lahiri DK, NurnbergerJr JI (1991) A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res 19:5444CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Alsene K, Deckert J, Sand P, de Wit H (2003) Association between A2A receptor gene polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology 28:1694–1702CrossRefPubMedGoogle Scholar
  41. 41.
    Hohoff C, McDonald JM, Baune BT, Cook EH, Deckert J, de Wit H (2005) Interindividual variation in anxiety response to amphetamine: possible role for adenosine A2A receptor gene variants. Am J Med Genet B Neuropsychiatr Genet 139B:42–44. CrossRefPubMedGoogle Scholar
  42. 42.
    Tsai SJ, Hong CJ, Hou SJ, Yen FC (2006) Association study of adenosine A2a receptor (1976C>T) genetic polymorphism and mood disorders and age of onset. Psychiatr Genet 16:185. CrossRefPubMedGoogle Scholar
  43. 43.
    Yu L, Frith MC, Suzuki Y, Peterfreund RA, Gearan T, Sugano S, Schwarzschild MA, Weng Z, Fink JS, Chen JF (2004) Characterization of genomic organization of the adenosine A2A receptor gene by molecular and bioinformatics analyses. Brain Res 1000:156–173. CrossRefPubMedGoogle Scholar
  44. 44.
    Kolbe D, Taylor J, Elnitski L, Eswara P, Li J, Miller W, Hardison R, Chiaromonte F (2004) Regulatory potential scores from genome-wide three-way alignments of human, mouse, and rat. Genome Res 14:700–707. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    King DC, Taylor J, Elnitski L, Chiaromonte F, Miller W, Hardison RC (2005) Evaluation of regulatory potential and conservation scores for detecting cis-regulatory modules in aligned mammalian genome sequences. Genome Res 15:1051–1060. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Crema LM, Pettenuzzo LF, Schlabitz M, Diehl L, Hoppe J, Mestriner R, Laureano D, Salbego C, Dalmaz C, Vendite D (2013) The effect of unpredictable chronic mild stress on depressive-like behavior and on hippocampal A1 and striatal A2A adenosine receptors. Physiol Behav 109:1–7. CrossRefPubMedGoogle Scholar
  47. 47.
    Conde L, Vaquerizas JM, Dopazo H, Arbiza L, Reumers J, Rousseau F, Schymkowitz J, Dopazo J (2006) PupaSuite: finding functional single nucleotide polymorphisms for large-scale genotyping purposes. Nucleic Acids Res 34:W621–W625. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Moreau JL, Huber G (1999) Central adenosine A(2A) receptors: an overview. Brain Res Brain Res Rev 31:65–82CrossRefPubMedGoogle Scholar
  49. 49.
    Satoh S, Matsumura H, Hayaishi O (1998) Involvement of adenosine A2A receptor in sleep promotion. Eur J Pharmacol 351:155–162CrossRefPubMedGoogle Scholar
  50. 50.
    Wulff K, Gatti S, Wettstein JG, Foster RG (2010) Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci 11:589–599. CrossRefPubMedGoogle Scholar
  51. 51.
    Jagannath A, Peirson SN, Foster RG (2013) Sleep and circadian rhythm disruption in neuropsychiatric illness. Curr Opin Neurobiol 23:888–894. CrossRefPubMedGoogle Scholar
  52. 52.
    Spiegelhalder K, Regen W, Nanovska S, Baglioni C, Riemann D (2013) Comorbid sleep disorders in neuropsychiatric disorders across the life cycle. Curr Psychiatry Rep 15:364. CrossRefPubMedGoogle Scholar
  53. 53.
    Pardo M, Lopez-Cruz L, Valverde O, Ledent C, Baqi Y, Müller CE, Salamone JD, Correa M (2012) Adenosine A2A receptor antagonism and genetic deletion attenuate the effects of dopamine D2 antagonism on effort-based decision making in mice. Neuropharmacology 62:2068–2077. CrossRefPubMedGoogle Scholar
  54. 54.
    Yohn SE, Thompson C, Randall PA, Lee CA, Müller CE, Baqi Y, Correa M, Salamone JD (2015) The VMAT-2 inhibitor tetrabenazine alters effort-related decision making as measured by the T-maze barrier choice task: reversal with the adenosine A2A antagonist MSX-3 and the catecholamine uptake blocker bupropion. Psychopharmacology 232:1313–1323. CrossRefPubMedGoogle Scholar
  55. 55.
    Takahashi RN, Pamplona FA, Prediger RD (2008) Adenosine receptor antagonists for cognitive dysfunction: a review of animal studies. Front Biosci 13:2614–2632CrossRefPubMedGoogle Scholar
  56. 56.
    Prediger RD, Pamplona FA, Fernandes D, Takahashi RN (2005) Caffeine improves spatial learning deficits in an animal model of attention deficit hyperactivity disorder (ADHD)–the spontaneously hypertensive rat (SHR). Int J Neuropsychopharmacol 8:583–594. CrossRefPubMedGoogle Scholar
  57. 57.
    Pandolfo P, Machado NJ, Köfalvi A, Takahashi RN, Cunha RA (2013) Caffeine regulates frontocorticostriatal dopamine transporter density and improves attention and cognitive deficits in an animal model of attention deficit hyperactivity disorder. Eur Neuropsychopharmacol 23:317–328. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Sílvia Oliveira
    • 1
    • 2
  • Ana Paula Ardais
    • 1
    • 3
    Email author
  • Clarissa Ribeiro Bastos
    • 1
  • Marta Gazal
    • 1
  • Karen Jansen
    • 1
  • Luciano de Mattos Souza
    • 1
  • Ricardo Azevedo da Silva
    • 1
  • Manuella Pinto Kaster
    • 4
  • Diogo Rizzato Lara
    • 5
  • Gabriele Ghisleni
    • 1
  1. 1.Department of Life and Health SciencesCatholic University of PelotasPelotasBrazil
  2. 2.Biology LaboratoryUniversity of Campanha RegionBagéBrazil
  3. 3.Laboratório de Neurociências Clínicas, Programa de Pós-Graduação em Saúde e ComportamentoUniversidade Católica de Pelotas (UCPel)PelotasBrazil
  4. 4.Department of BiochemistryFederal University of Santa CatarinaFlorianópolisBrazil
  5. 5.Department of Cellular and Molecular BiologyPontifical Catholic University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations