Advertisement

Purinergic Signalling

, Volume 13, Issue 4, pp 611–627 | Cite as

POM-1 inhibits P2 receptors and exhibits anti-inflammatory effects in macrophages

  • Gabriela Pimenta-dos-Reis
  • Eduardo José Lopes Torres
  • Paula Gabriela Quintana
  • Lincon Onorio Vidal
  • Bárbara Andréa Fortes dos Santos
  • Chuan-Sheng Lin
  • Norton Heise
  • Pedro Muanis Persechini
  • Julieta SchachterEmail author
Original Article

Abstract

Extracellular nucleotides can modulate the immunological response by activating purinergic receptors (P2Rs) on the cell surface of macrophages, dendritic, and other immune cells. In particular, the activation of P2X7R can induce release of cytokines and cell death as well as the uptake of large molecules through the cell membrane by a mechanism still poorly understood. Polyoxotungstate-1 (POM-1) has been proposed as a potent inhibitor of ecto-nucleotidases, enzymes that hydrolyze extracellular nucleotides, regulating the activity of P2Rs. However, the potential impact of POM-1 on P2Rs has not been evaluated. Here, we used fluorescent dye uptake, cytoplasmic free Ca2+ concentration measurement, patch-clamp recordings, scanning electron microscopy, and quantification of inflammatory mediators to investigate the effects of POM-1 on P2Rs of murine macrophages. We observed that POM-1 blocks the P2YR-dependent cytoplasmic Ca2+ increase and has partial effects on the cytoplasmic Ca2+, increasing dependence on P2XRs. POM-1 can inhibit the events related with ATP-dependent inflammasome activation, anionic dye uptake, and also the opening of large conductance channels, which are associated with P2X7R-dependent pannexin-1 activation. On the other hand, this compound has no effects on cationic fluorescent dye uptake, apoptosis, and bleb formation, also dependent on P2X7R. Moreover, POM-1 can be considered an anti-inflammatory compound, because it prevents TNF-α and nitric oxide release from LPS-treated macrophages.

Keywords

ATP Purinergic receptor POM-1 Macrophage Inflammation 

Notes

Acknowledgements

We thank the National Institute of Science and Technology for Structural Biology and Bioimaging—Microscopy Division (CENABIO-UFRJ) for allowing use of the scanning electron microscope.

Funding information

This research received financial support from CNPq, FAPERJ and FINEP.

Compliance with ethical standards

Conflicts of interest

Gabriela Pimenta-dos-Reis declares that she has no conflict of interest.

Eduardo José Lopes Torres declares that he has no conflict of interest.

Paula Gabriela Quintana declares that she has no conflict of interest.

Lincon Onorio Vidal declares that he has no conflict of interest.

Bárbara Andréa Fortes dos Santos declares that she has no conflict of interest.

Chuan-Sheng Lin declares that he has no conflict of interest.

Norton Heise declares that he has no conflict of interest.

Pedro Muanis Persechini declares that he has no conflict of interest.

Julieta Schachter declares that she has no conflict of interest.

Ethical approval

All animals were used according to the guidelines for animal use in scientific experiments of the Carlos Chagas Filho Institute of Biophysics of Federal University of Rio de Janeiro. The protocols were approved by the Research Ethics Committee on Animal Care of the Health Science Center of Federal University of Rio de Janeiro (protocol number 001200.001568/2013-87).

References

  1. 1.
    Junger WG (2011) Immune cell regulation by autocrine purinergic signaling. Nat Rev Immunol 11:201–212.  https://doi.org/10.1038/nri2938 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Burnstock G, Boeynaems JM (2014) Purinergic signalling and immune cells. Purinergic Signal 10:529–564.  https://doi.org/10.1007/s11302-014-9427-2 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Burnstock G (2014) Purinergic signalling: from discovery to current developments. Exp Physiol 99:16–34.  https://doi.org/10.1113/expphysiol.2013.071951 CrossRefPubMedGoogle Scholar
  4. 4.
    Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442:527–532.  https://doi.org/10.1038/nature04886 CrossRefPubMedGoogle Scholar
  5. 5.
    Di Virgilio F, Vuerich M (2015) Purinergic signaling in the immune system. Auton Neurosci 191:117–123.  https://doi.org/10.1016/j.autneu.2015.04.011 CrossRefPubMedGoogle Scholar
  6. 6.
    North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067.  https://doi.org/10.1152/physrev.00015.2002 CrossRefPubMedGoogle Scholar
  7. 7.
    Virginio C, MacKenzie A, North RA, Surprenant A (1999) Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. J Physiol Lond 519:335–346.  https://doi.org/10.1111/j.1469-7793.1999.0335m.x CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Coutinho-Silva R, Persechini PM (1997) P2Z purinoceptor-associated pores induced by extracellular ATP in macrophages and J774 cells. Am J Phys 273:C1793–C1800Google Scholar
  9. 9.
    Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082.  https://doi.org/10.1038/sj.emboj.7601378 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Schachter J, Motta AP, de Souza Zamorano A, da Silva-Souza HA, Guimarães MZ, Persechini PM (2008) ATP-induced P2X7-associated uptake of large molecules involves distinct mechanisms for cations and anions in macrophages. J Cell Sci 121:3261–3270.  https://doi.org/10.1242/jcs.029991 CrossRefPubMedGoogle Scholar
  11. 11.
    Cankurtaran-Sayar S, Sayar K, Ugur M (2009) P2X7 receptor activates multiple selective dye-permeation pathways in RAW 264.7 and human embryonic kidney 293 cells. Molecular Pharmacol 76:1323–1332.  https://doi.org/10.1124/mol.109.059923 CrossRefGoogle Scholar
  12. 12.
    Li M, Toombes GE, Silberberg SD, Swartz KJ (2015) Physical basis of apparent pore dilation of ATP-activated P2X receptor channels. Nat Neurosci 18:1577–1583.  https://doi.org/10.1038/nn.4120 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Csóka B, Németh ZH, Törő G, Idzko M, Zech A, Koscsó B, Spolarics Z, Antonioli L, Cseri K, Erdélyi K, Pacher P, Haskó G (2015) Extracellular ATP protects against sepsis through macrophage P2X7 purinergic receptors by enhancing intracellular bacterial killing. FASEB J 29:3626–3637.  https://doi.org/10.1096/fj.15-272450 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Di Virgilio F, Chiozzi P, Ferrari D, Falzoni S, Sanz JM, Morelli A, Torboli M, Bolognesi G, Baricordi OR (2001) Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 97:587–600.  https://doi.org/10.1182/blood.V97.3.587 CrossRefPubMedGoogle Scholar
  15. 15.
    Coutinho-Silva R, Stahl L, Raymond MN, Jungas T, Verbeke P, Burnstock G, Darville T, Ojcius DM (2003) Inhibition of chlamydial infectious activity due to P2X7R-dependent phospholipase D activation. Immunity 19:403–412.  https://doi.org/10.1016/S1074-7613(03)00235-8 CrossRefPubMedGoogle Scholar
  16. 16.
    Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Panther E, Di Virgilio F (2006) The P2X7 receptor: a key player in IL-1 processing and release. J Immunol 176:3877–3883.  https://doi.org/10.4049/jimmunol.176.7.3877 CrossRefPubMedGoogle Scholar
  17. 17.
    Pfeiffer ZA, Aga M, Prabhu U, Watters JJ, Hall DJ, Bertics PJ (2004) The nucleotide receptor P2X7 mediates actin reorganization and membrane blebbing in RAW 264.7 macrophages via p38 MAP kinase and Rho. J Leukoc Biol 75:1173–1182.  https://doi.org/10.1189/jlb.1203648 CrossRefPubMedGoogle Scholar
  18. 18.
    Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 5:437–502.  https://doi.org/10.1007/s11302-012-9309-4 CrossRefGoogle Scholar
  19. 19.
    Dwyer KM, Deaglio S, Gao W, Friedman D, Strom TB, Robson SC (2007) CD39 and control of cellular immune responses. Purinergic Signal 3:171–180.  https://doi.org/10.1007/s11302-006-9050-y CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Morandini AC, Savio LE, Coutinho-Silva R (2014) The role of P2X7 receptor in infectious inflammatory diseases and the influence of ectonucleotidases. Biom J 37:169–177.  https://doi.org/10.4103/2319-4170.127803 Google Scholar
  21. 21.
    Antonioli L, Yegutkin GG, Pacher P, Blandizzi C, Hasko G (2016) Anti-CD73 in cancer immunotherapy: awakening new opportunities. Trends Cancer 2:95–109.  https://doi.org/10.1016/j.trecan.2016.01.003 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Schachter J, Delgado KV, Barreto-de-Souza V, Bou-Habib DC, Persechini PM, Meyer-Fernandes JR (2015) Inhibition of ecto-ATPase activities impairs HIV-1 infection of macrophages. Immunobiology 220(5):589–596.  https://doi.org/10.1016/j.imbio.2014.12.004 CrossRefPubMedGoogle Scholar
  23. 23.
    Baqi Y (2015) Ecto-nucleotidase inhibitors: recent developments in drug discovery. Mini Rev Med Chem 15:21–33.  https://doi.org/10.2174/1389557515666150219115141 CrossRefPubMedGoogle Scholar
  24. 24.
    Munkonda MN, Kauffenstein G, Kukulski F, Lévesque SA, Legendre C, Pelletier J, Lavoie EG, Lecka J, Sévigny J (2007) Inhibition of human and mouse plasma membrane bound NTPDases by P2 receptor antagonists. Biochem Pharmacol 74:1524–1534.  https://doi.org/10.1016/j.bcp.2007.07.033 CrossRefPubMedGoogle Scholar
  25. 25.
    Dunn PM, Blakeley AG (1988) Suramin: a reversible P2-purinoceptor antagonist in the mouse vas deferens. Br J Pharmacol 93:243–245CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chen BC, Lee CM, Lin WW (1996) Inhibition of ecto-ATPase by PPADS, suramin and reactive blue in endothelial cells, C6 glioma cells and RAW 264.7 macrophages. Br J Pharmacol 119:1628–1634CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gendron FP, Benrezzak O, Krugh BW, Kong Q, Weisman GA, Beaudoin AR (2002) Purine signaling and potential new therapeutic approach: possible outcomes of NTPDase inhibition. Curr Drug Targets 3:229–245.  https://doi.org/10.2174/1389450023347713 CrossRefPubMedGoogle Scholar
  28. 28.
    Lee SY, Fiene A, Li W, Hanck T, Brylev KA, Fedorov VE, Lecka J, Haider A, Pietzsch HJ, Zimmermann H, Sévigny J, Kortz U, Stephan H, Müller CE (2015) Polyoxometalates-potent and selective ecto-nucleotidase inhibitors. Biochem Pharmacol 15:171–181.  https://doi.org/10.1016/j.bcp.2014.11.002 CrossRefGoogle Scholar
  29. 29.
    Kohler D, Eckle T, Faigle M, Grenz A, Mittelbronn M, Laucher S, Hart ML, Robson SC, Müller CE, Eltzschig HK (2007) CD39/ectonucleoside triphosphate diphosphohydrolase 1 provides myocardial protection during cardiac ischemia/reperfusion injury. Circulation 116:1784–1794.  https://doi.org/10.1161/CIRCULATIONAHA.107.690180 CrossRefPubMedGoogle Scholar
  30. 30.
    Grenz A, Zhang H, Hermes M, Eckle T, Klingel K, Huang DY, Müller CE, Robson SC, Osswald H, Eltzschig HK (2007) Contribution of E-NTPDase1 (CD39) to renal protection from ischemia-reperfusion injury. FASEB J 21:2863–2873.  https://doi.org/10.1096/fj.06-7947com CrossRefPubMedGoogle Scholar
  31. 31.
    Müller CE, Iqbal J, Baqi Y, Zimmermann H, Röllich A, Stephan H (2006) Polyoxometalates-a new class of potent ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) inhibitors. Bioorg Med Chem Lett 16:5943–5947.  https://doi.org/10.1016/j.bmcl.2006.09.003 CrossRefPubMedGoogle Scholar
  32. 32.
    Zhai F, Li D, Zhang C, Wang X, Li R (2008) Synthesis and characterization of polyoxometalates loaded starch nanocomplex and its antitumoral activity. Eur J Med Chem 43:1911–1917.  https://doi.org/10.1016/j.ejmech.2007.11.032 CrossRefPubMedGoogle Scholar
  33. 33.
    Seko A, Yamase T, Yamashita K (2009) Polyoxometalates as effective inhibitors for sialyl- and sulfotransferases. J Inorg Biochem 103:1061–1066.  https://doi.org/10.1016/j.jinorgbio.2009.05.002 CrossRefPubMedGoogle Scholar
  34. 34.
    Turner TL, Nguyen VH, McLauchlan CC, Dymon Z, Dorsey BM, Hooker JD, Jones MA (2012) Inhibitory effects of decavanadate on several enzymes and Leishmania tarentolae in vitro. J Inorg Biochem 108:96–104.  https://doi.org/10.1016/j.jinorgbio.2011.09.009 CrossRefPubMedGoogle Scholar
  35. 35.
    Qi Y, Xiang Y, Wang J, Qi Y, Li J, Niu J, Zhong J (2013) Inhibition of hepatitis C virus infection by polyoxometalates. Antivir Res 100:392–398.  https://doi.org/10.1016/j.antiviral.2013.08.025 CrossRefPubMedGoogle Scholar
  36. 36.
    Nomiya K, Torii H, Hasegawa T, Nemoto Y, Nomura K, Hashino K, Uchida M, Kato Y, Shimizu K, Oda M (2001) Insulin mimetic effect of a tungstate cluster. Effect of oral administration of homopolyoxotungstates and vanadium-substituted polyoxotungstates on blood glucose level of STZ mice. J Inorg Biochem 86:657–667.  https://doi.org/10.1016/S0162-0134(01)00233-1 CrossRefPubMedGoogle Scholar
  37. 37.
    Amobi NI, Guillebaud J, Smith IC (2012) Perspective on the role of P2X-purinoceptor activation in human vas deferens contractility. Exp Physiol 97:583–602.  https://doi.org/10.1113/expphysiol.2011.063206 CrossRefPubMedGoogle Scholar
  38. 38.
    Pinheiro AR, Paramos-de-Carvalho D, Certal M, Costa C, Magalhães-Cardoso MT, Ferreirinha F, Costa MA, Correia-de-Sá P (2013) Bradykinin-induced Ca2+ signaling in human subcutaneous fibroblasts involves ATP release via hemichannels leading to P2Y12 receptors activation. Cell Commun Signal 18:70.  https://doi.org/10.1186/1478-811X-11-70 CrossRefGoogle Scholar
  39. 39.
    Wan P, Liu X, Xiong Y, Ren Y, Chen J, Lu N, Guo Y, Bai A (2016) Extracellular ATP mediates inflammatory responses in colitis via P2X7 receptor signaling. Sci Rep 6:19108.  https://doi.org/10.1038/srep19108 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100:95–97.  https://doi.org/10.1016/0003-2697(79)90115-5 CrossRefPubMedGoogle Scholar
  41. 41.
    Russo-Abrahão T, Cosentino-Gomes D, Gomes MT, Alviano DS, Alviano CS, Lopes AH, Meyer-Fernandes JR (2011) Biochemical properties of Candida parapsilosis ecto-5′-nucleotidase and the possible role of adenosine in macrophage interaction. FEMS Microbiol Lett 317:34–42.  https://doi.org/10.1111/j.1574-6968.2011.02216.x CrossRefPubMedGoogle Scholar
  42. 42.
    Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Eur. J Physiol 391:85–100Google Scholar
  43. 43.
    Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1:1458–1461.  https://doi.org/10.1038/nprot.2006.238 CrossRefPubMedGoogle Scholar
  44. 44.
    da Silva-Souza HA, Lira MN, Costa-Junior HM, da Cruz CM, Vasconcellos JS, Mendes AN, Pimenta-Reis G, Alvarez CL, Faccioli LH, Serezani CH, Schachter J, Persechini PM (2014) Inhibitors of the 5-lipoxygenase arachidonic acid pathway induce ATP release and ATP-dependent organic cation transport in macrophages. Biochim Biophys Acta 1838:1967–1977.  https://doi.org/10.1016/j.bbamem.2014.04.006 CrossRefPubMedGoogle Scholar
  45. 45.
    Granger DL, Taintor RR, Boockvar KS, Hibbs JB Jr (1996) Measurement of nitrate and nitrite in biological samples using nitrate reductase and Griess reaction. Methods Enzymol 268:142–151CrossRefPubMedGoogle Scholar
  46. 46.
    von Kügelgen I, Hoffmann K (2016) Pharmacology and structure of P2Y receptors. Neuropharmacology 104:50–61.  https://doi.org/10.1016/j.neuropharm.2015.10.030 CrossRefGoogle Scholar
  47. 47.
    Jacobson KA, Müller CE (2016) Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology 104:31–49.  https://doi.org/10.1016/j.neuropharm.2015.12.001 CrossRefPubMedGoogle Scholar
  48. 48.
    Costa-Junior HM, Mendes AN, Davis GHNG, Monteiro-da-Cruz C, Ventura AL, Serezani CH, Faccioli LH, Freire-de-Lima CG, Bisaggio RC, Persechini PM (2009) ATP-induced apoptosis involves a Ca2+-independent phospholipase A2 and 5-lipoxygenase in macrophages. Prostaglandins Other Lipid Mediat 88:51–61.  https://doi.org/10.1016/j.prostaglandins.2008.09.004 CrossRefPubMedGoogle Scholar
  49. 49.
    Hu Z, Murakami T, Suzuki K, Tamura H, Kuwahara-Arai K, Iba T, Nagaoka I (2014) Antimicrobial cathelicidin peptide LL-37 inhibits the LPS/ATP-induced pyroptosis of macrophages by dual mechanism. PLoS One 9:e85765.  https://doi.org/10.1371/journal.pone.0085765 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Keller H, Rentsch P, Hagmann J (2002) Differences in cortical actin structure and dynamics document that different types of blebs are formed by distinct mechanisms. Exp Cell Res 277:161–172.  https://doi.org/10.1006/excr.2002.5552 CrossRefPubMedGoogle Scholar
  51. 51.
    Verhoef PA, Estacion M, Schilling W, Dubyak GR (2003) P2X7 receptor-dependent blebbing and the activation of Rho-effector kinases, caspases, and IL-1 release. J Immunol 170:5728–5738.  https://doi.org/10.4049/jimmunol.170.11.5728 CrossRefPubMedGoogle Scholar
  52. 52.
    Pan Y, Shen B, Gao Q, Zhu J, Dong J, Zhang L, Zhang Y (2016) Caspase-1 inhibition attenuates activation of BV2 microglia induced by LPS-treated RAW 264.7 macrophages. J Biomed Res 30:225–233.  https://doi.org/10.7555/JBR.30.20150141 PubMedPubMedCentralGoogle Scholar
  53. 53.
    Sperlagh B, Hasko G, Nemeth Z, Vizi ES (1998) ATP released by LPS increases nitric oxide production in raw 264.7 macrophage cell line via P2Z/P2X7 receptors. Neurochem Int 33:209–215.  https://doi.org/10.1016/S0197-0186(98)00025-4 CrossRefPubMedGoogle Scholar
  54. 54.
    Sakaki H, Tsukimoto M, Harada H, Moriyama Y, Kojima S (2013) Autocrine regulation of macrophage activation via exocytosis of ATP and activation of P2Y11 receptor. PLoS One 8:e59778.  https://doi.org/10.1371/journal.pone.0059778 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lévesque SA, Kukulski F, Enjyoji K, Robson SC, Sévigny J (2010) NTPDase1 governs P2X7-dependent functions in murine macrophages. Eur J Immunol 40:1473–1485.  https://doi.org/10.1002/eji.200939741 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Zanin RF, Braganhol E, Bergamin LS, Campesato LF, Filho AZ, Moreira JC, Morrone FB, Sévigny J, Schetinger MR, de Souza Wyse AT, Battastini AM (2012) Differential macrophage activation alters the expression profile of NTPDase and ecto-5′-nucleotidase. PLoS One 7:e31205.  https://doi.org/10.1371/journal.pone.0031205 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Wall MJ, Wigmore G, Lopatár J, Frenguelli BG, Dale N (2008) The novel NTPDase inhibitor sodium polyoxotungstate (POM-1) inhibits ATP breakdown but also blocks central synaptic transmission, an action independent of NTPDase inhibition. Neuropharmacology:1251–1258.  https://doi.org/10.1016/j.neuropharm.2008.08.005
  58. 58.
    Van Kolen K, Slegers H (2006) Integration of P2Y receptor-activated signal transduction pathways in G protein-dependent signalling networks. Purinergic Signal 2:451–469.  https://doi.org/10.1007/s11302-006-9008-0 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Coutinho-Silva R, Ojcius DM, Górecki DC, Persechini PM, Bisaggio RC, Mendes AN, Marks J, Burnstock G, Dunn PM (2005) Multiple P2X and P2Y receptor subtypes in mouse J774, spleen and peritoneal macrophages. Biochem Pharmacol 69:641–655.  https://doi.org/10.1016/j.bcp.2004.11.012 CrossRefPubMedGoogle Scholar
  60. 60.
    da Cruz CM, Ventura AL, Schachter J, Costa-Junior HM, da Silva Souza HA, Gomes FR, Coutinho-Silva R, Ojcius DM, Persechini PM (2006) Activation of ERK1/2 by extracellular nucleotides in macrophages is mediated by multiple P2 receptors independently of P2X7-associated pore or channel formation. Br J Pharmacol 147:324–334.  https://doi.org/10.1038/sj.bjp.0706559 CrossRefPubMedGoogle Scholar
  61. 61.
    Mehta VB, Hart J, Wewers MD (2001) ATP-stimulated release of interleukin (IL)-1 and IL-18 requires priming by lipopolysaccharide and is independent of caspase-1 cleavage. J Biol Chem 276:3820–3826.  https://doi.org/10.1074/jbc.M006814200 CrossRefPubMedGoogle Scholar
  62. 62.
    Miao EA, Rajan JV, Aderem A (2011) Caspase-1-induced pyroptotic cell death. Immunol Rev 243:206–214.  https://doi.org/10.1111/j.1600-065X.2011.01044.x CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Lamkanfi M, Kalai M, Saelens X, Declercq W, Vandenabeele P (2004) Caspase-1 activates nuclear factor of the kappa-enhancer in B cells independently of its enzymatic activity. J Biol Chem 279:24785–24793.  https://doi.org/10.1074/jbc.M400985200 CrossRefPubMedGoogle Scholar
  64. 64.
    Pan Y, Shen B, Gao Q, Zhu J, Dong J, Zhang L, Zhang Y (2016) Caspase-1 inhibition attenuates activation of BV2 microglia induced by LPS-treated RAW264.7 macrophages. J Biomed Res 30:225–233.  https://doi.org/10.7555/JBR.30.20150141 PubMedPubMedCentralGoogle Scholar
  65. 65.
    Lee J, Choi J, Kim S (2015) Effective suppression of pro-inflammatory molecules by DHCA via IKK-NF-κB pathway, in vitro and in vivo. Br J Pharmacol 172:3353–3369.  https://doi.org/10.1111/bph.13137 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Kong Q, Wang M, Liao Z, Camden JM, Yu S, Simonyi A, Sun GY, Gonzalez FA, Erb L, Seye CI, Weisman GA (2005) (2005) P2X7 nucleotide receptors mediate caspase-8/9/3-dependent apoptosis in rat primary cortical neurons. Purinergic Signal 1:337–347.  https://doi.org/10.1007/s11302-005-7145-5 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Hanley PJ, Kronlage M, Kirschning C, del Rey A, Di Virgilio F, Leipziger J, Chessell IP, Sargin S, Filippov MA, Lindemann O, Mohr S, Königs V, Schillers H, Bähler M, Schwab A (2012) Transient P2X7 receptor activation triggers macrophage death independent of Toll-like receptors 2 and 4, caspase-1, and pannexin-1 proteins. J Biol Chem 287:10650–10663.  https://doi.org/10.1074/jbc.M111.332676 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Mackenzie AB, Young MT, Adinolfi E, Surprenant A (2005) Pseudoapoptosis induced by brief activation of ATP-gated P2X7 receptors. J Biol Chem 280:33968–33976.  https://doi.org/10.1074/jbc.M502705200 CrossRefPubMedGoogle Scholar
  69. 69.
    Roger S, Pelegrin P, Surprenant A (2008) Facilitation of P2X7 receptor currents and membrane blebbing via constitutive and dynamic calmodulin binding. J Neurosci 28:6393–6401.  https://doi.org/10.1523/JNEUROSCI.0696-08.2008 CrossRefPubMedGoogle Scholar
  70. 70.
    Noronha-Matos JB, Coimbra J, Sá-e-Sousa A, Rocha R, Marinhas J, Freitas R, Guerra-Gomes S, Ferreirinha F, Costa MA, Correia-de-Sá P (2014) P2X7-induced zeiosis promotes osteogenic differentiation and mineralization of postmenopausal bone marrow-derived mesenchymal stem cells. FASEB J 28:5208–5222.  https://doi.org/10.1096/fj.14-257923 CrossRefPubMedGoogle Scholar
  71. 71.
    Pelegrin P, Surprenant A (2009) The P2X(7) receptor-pannexin connection to dye uptake and IL-1beta release. Purinergic Signal 5:129–137.  https://doi.org/10.1007/s11302-009-9141-7 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Qu Y, Misaghi S, Newton K, Gilmour LL, Louie S, Cupp JE, Dubyak GR, Hackos D, Dixit VM (2011) Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J Immunol 186:6553–6561.  https://doi.org/10.4049/jimmunol.1100478 CrossRefPubMedGoogle Scholar
  73. 73.
    Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, Zhang J, Lee WP, Roose-Girma M, Dixit VM (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121.  https://doi.org/10.1038/nature10558 CrossRefPubMedGoogle Scholar
  74. 74.
    Yang D, He Y, Muñoz-Planillo R, Liu Q, Núñez G (2015) Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity 43:923–932.  https://doi.org/10.1016/j.immuni.2015.10.009 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Gabriela Pimenta-dos-Reis
    • 1
  • Eduardo José Lopes Torres
    • 2
  • Paula Gabriela Quintana
    • 1
  • Lincon Onorio Vidal
    • 1
  • Bárbara Andréa Fortes dos Santos
    • 1
  • Chuan-Sheng Lin
    • 3
    • 4
  • Norton Heise
    • 1
  • Pedro Muanis Persechini
    • 1
  • Julieta Schachter
    • 3
    • 5
    Email author
  1. 1.Instituto de Biofísica Carlos Chagas Filho da Universidade Federal de Rio de JaneiroRio de JaneiroBrazil
  2. 2.Laboratório de Helmintologia Romero Lascasas Porto, Departamento de Microbiologia, Imunologia e Parasitologia. Faculdade de Ciências MédicasUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Microbiota Research CenterChang Gung UniversityTaoyuanTaiwan
  4. 4.Center for Molecular and Clinical ImmunologyChang Gung UniversityTaoyuanTaiwan
  5. 5.Polo XeremUniversidade Federal de Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations